Digitally created image of a double helix

Genetic Repositories Australia (GRA)



Genetic Repositories Australia (GRA) is a national genetic repository for DNA and cell lines derived from appropriately consented disease-specific and population-based studies. GRA has been supported by a $2 million National Health & Medical Research Council (NHMRC) Enabling Facility Grant and is based at Neuroscience Research Australia (NeuRA).

The Chief Investigators on the NHMRC Enabling Grant 401184 are Prof Peter Schofield (Neuroscience Research Australia and University of New South Wales), Assoc Prof Juleen Cavanaugh (Australian National University), Dr Susan Forrest (Australian Genome Research Facility) and Prof John Hopper (University of Melbourne).

Change of funding arrangements for NHMRC Enabling Facilities
Important changes in NHMRC Support Mechanisms have been implemented; please refer to the following letter for further information.

NHMRC Support Mechanisms PDF

Obtaining cost estimates for NHMRC Project Grant submissions
If you are intending to submit a Project Grant application which involves the use of Genetic Repositories Australia, then please contact the facility via or (02 9399 1725) as soon as possible to discuss your proposal and to obtain a cost estimate.

Kerrie Pierce

See what’s going on at NeuRA


Abdominal muscle stimulation to improve bowel function in spinal cord injury

Bowel complications, resulting from impaired bowel function, are common for people living with a spinal cord injury (SCI). As a result, people with a SCI have high rates of bowel related illness, even compared with those with other neurological disorders. This includes high rates of abdominal pain, constipation, faecal incontinence and bloating. These problems lower the quality of life of people with a SCI and place a financial burden on the health system. A treatment that improves bowel function for people with a SCI should reduce illness, improve quality of life and lead to a large cost saving for health care providers. Bowel problems have traditionally been managed with manual and pharmacological interventions, such as digital rectal stimulation, enemas, and suppositories. These solutions are usually only partially effective, highlighting the need for improved interventions. The abdominal muscles are one of the major muscle groups used during defecation. Training the abdominal muscles should improve bowel function by increasing abdominal pressure. During our previous Abdominal FES research with people with a SCI, we observed that Abdominal FES appeared to lead to more consistent and effective bowel motion. However, this evidence remains anecdotal. As such, we are going to undertake a large randomised controlled trial to investigate the effectiveness of Abdominal FES to improve the bowel function of people with a SCI. This study will make use of a novel measurement system (SmartPill, Medtronic) that can be swallowed to measure whole gut and colonic transit time. We will also assess whether Abdominal FES can change constipation-related quality of life and the use of laxatives and manual procedures, as well as the frequency of defecation and the time taken. A positive outcome from this study is likely to lead to the rapid clinical translation of this technology for people living with a SCI.