Breathing

HEALTH INFORMATION

Studies of voluntary and involuntary control of human breathing

WHAT WE KNOW

Breathing is a complex motor task that needs to be coordinated at all times while we eat, speak, exercise and even during sleep. The breathing muscles are controlled automatically from the brainstem during normal breathing but can also be controlled voluntarily from the motor cortex.

The way these two drives to the breathing muscles interact is still not well understood. While there is some evidence that there are at least two independent pathways, and that integration of the pathways occurs at the spinal cord, there is some uncertainty about whether these pathways may have some interaction in the brainstem.

Our overall goal is to determine the role of neural drive in impairments of respiratory muscle function in older adults (over 65 years), people with chronic obstructive pulmonary disease (COPD), spinal injury or obstructive sleep apnoea (OSA).

What else is happening in Breathing research at NeuRA?

FEEL THE BUZZ IN THE AIR? US TOO.

'I've got the best job for you dad. Your shaky arm will be perfect for it!'

Children… honest and insightful. Their innocence warms the heart. But what words do you use to explain to a child that daddy has an incurable brain disease? What words tell them that in time he may not be able to play football in the park, let alone feed himself? What words help them understand that in the later stages, dementia may also strike? Aged just 36, this was the reality that faced Steve Hartley. Parkinson's disease didn't care he was a fit, healthy, a young dad and devoted husband. It also didn't seem to care his family had no history of it. The key to defeating Parkinson's disease is early intervention, and thanks to a global research team, led by NeuRA, we're pleased to announce that early intervention may be possible. Your support, alongside national and international foundations Shake it Up Australia and the Michael J Fox Foundation, researchers have discovered that a special protein, found in people with a family history of the disease increases prior to Parkinson’s symptoms developing. This is an incredible step forward, because it means that drug therapies, aimed at blocking the increase in the protein, can be administered much earlier – even before symptoms strike. The next step is to understand when to give the drug therapies and which people will most benefit from it. But we need your help. A gift today will support vital research and in time help medical professionals around the world treat Parkinson’s disease sooner, with much better health outcomes. Thank you, in advance, for your support.  
APPEAL