Breathing

HEALTH INFORMATION

Studies of voluntary and involuntary control of human breathing

WHAT WE KNOW

Breathing is a complex motor task that needs to be coordinated at all times while we eat, speak, exercise and even during sleep. The breathing muscles are controlled automatically from the brainstem during normal breathing but can also be controlled voluntarily from the motor cortex.

The way these two drives to the breathing muscles interact is still not well understood. While there is some evidence that there are at least two independent pathways, and that integration of the pathways occurs at the spinal cord, there is some uncertainty about whether these pathways may have some interaction in the brainstem.

Our overall goal is to determine the role of neural drive in impairments of respiratory muscle function in older adults (over 65 years), people with chronic obstructive pulmonary disease (COPD), spinal injury or obstructive sleep apnoea (OSA).

What else is happening in Breathing research at NeuRA?

FEEL THE BUZZ IN THE AIR? US TOO.

Exploring the electrophysiology and heritability of wellbeing and resilience

The majority of adults without a mental illness still experience poor mental health, indicating a need for a better understanding of what separates mental wellness from mental illness. One way of exploring what separates those with good mental health from those with poor mental health is to use electroencephalography (EEG) to explore differences in brain activity within the healthy population. Previous research has shown that EEG measures differ between clinical groups and healthy participants, suggesting that these measures are useful indicators of mental functioning. Miranda Chilver’s current project aims to examine how different EEG measures relate to each other and to test if they can be used to predict mental wellbeing. Furthermore, she hopes to distinguish between EEG markers of symptoms including depression and anxiety, and markers of positive symptoms of wellbeing to better understand how wellbeing can exist independently of mental illness. This will be done by obtaining measures of wellbeing and depression and anxiety symptoms using the COMPAS-W and DASS-42 questionnaires, respectively. Because EEG measures and mental wellbeing are both impacted by genetics as well as the environment, Miranda will also be testing whether the links found between EEG activity and Wellbeing are driven primarily by heritable or by environmental factors. This information will inform the development of future interventions that will aim to improve wellbeing in the general population. To achieve these goals, the project will assess the relationship between EEG activity and wellbeing, and between EEG and depression and anxiety symptoms to first test whether there is an association between EEG and mental health. Second, the heritability of the EEG, wellbeing, depression, and anxiety will be assessed to determine the extent to which these variables are explained through heritable or environmental factors. Finally, a model assessing the overlap between the heritable versus environmental contributions to each measure will be developed to assess whether genetics or environment drive the relationship between EEG and mental health. This project is based on a sample of over 400 healthy adult twins from the Australian TWIN-E study of resilience led by Dr Justine Gatt. This research will pave the way for improved mental health interventions based on individual needs.
PROJECT