Breathing

HEALTH INFORMATION

Studies of voluntary and involuntary control of human breathing

WHAT WE KNOW

Breathing is a complex motor task that needs to be coordinated at all times while we eat, speak, exercise and even during sleep. The breathing muscles are controlled automatically from the brainstem during normal breathing but can also be controlled voluntarily from the motor cortex.

The way these two drives to the breathing muscles interact is still not well understood. While there is some evidence that there are at least two independent pathways, and that integration of the pathways occurs at the spinal cord, there is some uncertainty about whether these pathways may have some interaction in the brainstem.

Our overall goal is to determine the role of neural drive in impairments of respiratory muscle function in older adults (over 65 years), people with chronic obstructive pulmonary disease (COPD), spinal injury or obstructive sleep apnoea (OSA).

What else is happening in Breathing research at NeuRA?

FEEL THE BUZZ IN THE AIR? US TOO.

Abdominal Functional Electrical Stimulation for Orthostatic Hypotension in Spinal Cord Injury

Spinal cord injury (SCI) results in the loss of function to not only voluntary motor control, but also to the regulatory systems that control bodily processes. Orthostatic (postural) hypotension (OH) is a common clinical feature in SCI patients, affecting up to 73% of patients with cervical spine and upper thoracic spine injuries during mobilisation and postural changes. This often results in symptoms of dizziness, light-headedness, fatigue and confusion, in turn limiting individual participation in physical rehabilitation and restricting progress towards regaining function and independence. Therapeutic interventions are centred around ameliorating symptoms of OH; however, options for patients remain limited. Non-pharmacological treatments have had little success at treating hypotension in the long-term, while pharmacological interventions are used only when necessary as they may contribute to hypertension and even worsen episodes of autonomic dysreflexia, a life-threatening condition. Functional Electrical Stimulation (FES) is one of the only interventions that has been shown to display some benefit in improving OH. Recently, stimulation of the lower limbs has been shown to acutely increase blood pressure in patients with SCI. Our recent projects have involved the use of FES applied over the abdominal muscles, termed abdominal FES, for SCI patients at risk of respiratory complications with promising results. As this same population is at risk of orthostatic hypotension, this study aims to determine whether abdominal stimulation can also be used to help this condition. Based on our previous research, we believe that abdominal FES will increase blood pressure acutely during an orthostatic challenge in individuals with acute spinal cord injury, allowing for a longer time spent in a standing position. This will facilitate more effective rehabilitation, therefore improving quality of life and decreasing associated medical complications.
PROJECT