Multiple system atrophy

HEALTH INFORMATION

Understanding why and how MSA occurs

WHAT WE KNOW

Multiple system atrophy (MSA) is a progressive degenerative neurological disorder that affects adult men and women, usually in their 50s or 60s. It is caused by degeneration or atrophy of nerve cells in specific areas of the brain. It is still unclear as to why cells become damaged in people with MSA and further research needs to be conducted into why and how this happens.

The shrinking of the cells can cause problems with movement, balance and autonomic functions of the body such as bladder and blood pressure control.

Symptoms may include fainting spells and problems with heart rate, erectile dysfunction, and bladder control. Motor impairments (ie, loss of or limited muscle control or movement, or limited mobility) may include tremor, rigidity, and/or loss of muscle coordination as well as difficulties with speech and gait (the way a person walks).

The clinical features of MSA overlap with those of Parkinson’s disease, and for this reason, early cases of MSA are often misdiagnosed as Parkinson’s disease. We now know that the feature that definitively identifies MSA pathology is the buildup of a protein called alpha-synuclein in oligodendrocytes, the support cells of the brain.

These cells are responsible for producing myelin, which is the specialised membrane that encases the nerve fibres in the brain. The alpha-synuclein protein buildups in the brain of people with MSA mean that the oligodendrocytes cannot properly make myelin, and without myelin the neurons will degenerate and eventually die.

The cause of MSA is unknown, no specific risk factors have been identified, and there is no cure or effective treatment. Treatment for MSA includes medications and lifestyle changes to help manage symptoms. The condition progresses gradually and eventually leads to death.

What else is happening in Multiple system atrophy research at NeuRA?

FEEL THE BUZZ IN THE AIR? US TOO.

Exploring the electrophysiology and heritability of wellbeing and resilience

The majority of adults without a mental illness still experience poor mental health, indicating a need for a better understanding of what separates mental wellness from mental illness. One way of exploring what separates those with good mental health from those with poor mental health is to use electroencephalography (EEG) to explore differences in brain activity within the healthy population. Previous research has shown that EEG measures differ between clinical groups and healthy participants, suggesting that these measures are useful indicators of mental functioning. Miranda Chilver’s current project aims to examine how different EEG measures relate to each other and to test if they can be used to predict mental wellbeing. Furthermore, she hopes to distinguish between EEG markers of symptoms including depression and anxiety, and markers of positive symptoms of wellbeing to better understand how wellbeing can exist independently of mental illness. This will be done by obtaining measures of wellbeing and depression and anxiety symptoms using the COMPAS-W and DASS-42 questionnaires, respectively. Because EEG measures and mental wellbeing are both impacted by genetics as well as the environment, Miranda will also be testing whether the links found between EEG activity and Wellbeing are driven primarily by heritable or by environmental factors. This information will inform the development of future interventions that will aim to improve wellbeing in the general population. To achieve these goals, the project will assess the relationship between EEG activity and wellbeing, and between EEG and depression and anxiety symptoms to first test whether there is an association between EEG and mental health. Second, the heritability of the EEG, wellbeing, depression, and anxiety will be assessed to determine the extent to which these variables are explained through heritable or environmental factors. Finally, a model assessing the overlap between the heritable versus environmental contributions to each measure will be developed to assess whether genetics or environment drive the relationship between EEG and mental health. This project is based on a sample of over 400 healthy adult twins from the Australian TWIN-E study of resilience led by Dr Justine Gatt. This research will pave the way for improved mental health interventions based on individual needs.
PROJECT