Neural injury

HEALTH INFORMATION

Understanding the mechanisms of spinal injury

WHAT WE KNOW

We are interested in how the body’s tissues respond to mechanical forces, both as a part of normal function and in injury, such as in physical trauma or when a nerve is compressed.

A major part of our neural injury research involves understanding how injuries occur in road trauma, which is a leading cause of death and disabling injury in Australia, for both adults and children.

We are studying how these injuries occur, and how changes to the types and design of restraints used by children and passengers in the rear seat of cars can reduce serious injuries and death.

OUR LATEST RESEARCH

The RESTORE Trial: Immersive Virtual Reality Treatment for Restoring Touch Perception in People with

Chief Investigators: Associate Professor Sylvia Gustin, Prof James Middleton, A/Prof Zina Trost, Prof Ashley Craig, Prof Jim Elliott, Dr Negin Hesam-Shariati, Corey Shum and James Stanley

While recognition of surviving pathways in complete injuries has tremendous implications for SCI rehabilitation, currently no effective treatments exist to promote or restore touch perception among those with discomplete SCI. The proposed study will address this need by developing and testing a novel intervention that can provide touch restoration via the primary source of sensory perception: the brain.Complete spinal cord injury (SCI) is associated with a complete loss of function such as mobility or sensation. In a recent discovery we revealed that 50% of people with complete SCI still have surviving somatosensory nerve fibres at the level of the spine. For those with complete SCI this is hopeful news as it means — contrary to previous belief that communication to the brain had been severed by injury — that the brain is still receiving messages. This new SCI type is labelled “discomplete SCI” — a SCI person who cannot feel touch, but touch information is still forwarded from the foot to the brain.

The project will use virtual reality (VR) in a way it has never been used before. We will develop the first immersive VR interface that simultaneously enhances surviving spinal somatosensory nerve fibres and touch signals in the brain in an effort to restore touch perception in people with discomplete SCI. In other words, immersive VR is being used to re-train the brain to identify the distorted signals from toe to head as sensation (touch). For example, participants will receive touch simulation in the real world (e.g., their toe) while at the same time receiving corresponding multisensory touch stimuli in the virtual world (e.g., experiencing walking up to kick a ball).

This project is the first effort worldwide to restore touch sensation in 50% of individuals with complete injuries. The outcomes to be achieved from the current study will represent a cultural and scientific paradigmatic shift in terms of what can be expected from life with a spinal cord injury. In addition, the project allows potential identification of brain mechanisms that may ultimately represent direct targets for acute discomplete SCI rehabilitation, including efforts to preserve rather than restore touch perception following SCI.

RESTORE consolidates the expertise of scientists, clinicians, VR developers and stakeholders from NeuRA and UNSW School of Psychology (A/Prof Sylvia Gustin, Dr Negin Hesam-Shariati), John Walsh Centre for Rehabilitation Research, Kolling Institute and University of Sydney (Prof James Middleton, Prof Ashley Craig and Prof Jim Elliott), Virginia Commonwealth University (A/Prof Zina Trost), Immersive Experience Laboratories LLC (Director Corey Shum) and James Stanley.

If you are interested in being contacted about the RESTORE trial, please email A/Prof Sylvia Gustin (s.gustin@unsw.edu.au) and include your name, phone number, address, type of SCI (e.g., complete or incomplete), level of injury (e.g., T12) and duration of SCI (e.g., 5 years).

MEMOIR – a clinical trial for Complex Regional Pain Syndrome

MEMOIR is an Australian government-funded clinical trial for Complex Regional Pain Syndrome (CRPS). MEMOIR is testing two new interventions for people with CRPS – a new drug and rehabilitation program. MEMOIR will be conducted remotely, via Telehealth, allowing for Australia-wide recruitment of eligible participants.

Please click on the link below to check if you are eligible.

 

 

What is Complex Regional Pain Syndrome (CRPS)?

CRPS is a disabling pain disorder. It affects approximately 5,000 people in Australia annually. CRPS is characterised by severe burning, stinging and stabbing pain. People with CRPS may not be able to use their affected limb and their ability to work or participate in normal social activities can be severely restricted. Currently, there are no interventions for CRPS whose efficacy is supported by high-quality evidence.

What is the MEMOIR Trial?

The MEMOIR trial is an Australian Government-funded, randomised controlled trial testing two novel treatments for CRPS. MEMOIR will test whether two new interventions, produce greater improvements in pain intensity and pain interference than placebo and standard care for CRPS.

The MEMOIR trial will be delivered remotely, via Telehealth, allowing Australia-wide recruitment of 160 participants. MEMOIR is the first, large, high-quality clinical trial to evaluate of the effects of two new interventions.

What is usual care?

Usual care is the continuation of your current management for CRPS, excluding the therapies outlined in the exclusion criteria. This might include medical, physical or psychological management of CRPS.

Will these treatments improve my CRPS?

The effectiveness of these treatments is not known. We are attempting to find this out by conducting this research study. MEMOIR is the first, large, high-quality clinical trial to evaluate of the effects of two new interventions.

Who can participate in the MEMOIR Trial?

To be eligible for the MEMOIR trial, you must:

  • Have (or suspected to have) chronic CRPS of 6 months to 5 years duration
  • Have at least moderate pain intensity and disability as measured by validated scales
  • Be 18 years of age or over
  • Have access to a computer (or tablet) and internet
  • Have CRPS in a single limb only

You will not be eligible to participate in the MEMOIR trial if:

  • You are female, of child-bearing potential and not using reliable contraceptive method(s)
  • You are pregnant and lactating
  • You have an allergy to the study drug family (NMDA antagonists)
  • You are taking high dose opioid analgesics or methadone
  • You are taking high dose anticonvulsant medicines
  • You are taking certain types of antidepressant medicines
  • You are taking anti-psychotic medicines
  • You have high blood pressure, or your blood pressure is managed with medicine
  • You have a heart-rhythm disorder, or you are taking a medicine to manage this condition
  • You have a kidney condition
  • You have a history of neurological conditions (stroke, seizure, Alzheimer’s)
  • You have an implanted spinal cord or nerve stimulator
  • You are currently using Graded Motor Imagery

What is required as a participant of the MEMOIR Trial?

Participation in this trial requires a large time commitment for participants. The time commitment varies depending on the group that you are allocated to.

All study participants will be asked to take an oral drug or placebo for 16 weeks and maintain daily records, and complete outcome questionnaires, four times throughout the study (these will take approximately 30 minutes to complete).

Participants receiving rehabiliation will be asked to attend 7, 60-minute physiotherapy sessions via Zoom and will complete online modules incorporating rehabilitative activities and education, for approximately 30-60 minutes each day, for 16 weeks.

Participants receiving usual care will be asked to continue their current treatment, excluding any treatments that are listed in the study exclusion criteria.

The trial treatment period will run for a period of 16 weeks. After this, we will require you to complete two further assessments at 6 months and 12 months.

Will I get paid to be a participant in the MEMOIR Trial?

Participation in this study will not cost you anything, nor will you be paid.

How can I contact the MEMOIR Trial?

0414 062 189

memoir@unsw.edu.au

MEMOIR Team

MEMOIR consolidates the expertise of the following international scientists and clinicians:

  • Prof James McAuley, School of Health Sciences & NeuRA, University of New South Wales
  • A/Prof Sylvia Gustin, School of Psychology & NeuRA, University of New South Wales
  • Prof Andrew McLachlan, Dean of Pharmacy, University of Sydney
  • Prof Lorimer Moseley, University of South Australia
  • Prof Benedict Wand, School of Physiotherapy, University of Notre Dame Australia
  • Dr Neil O’Connell, Brunel University London
  • Dr Hopin Lee, University of Oxford
  • Prof Eric Visser, School of Medicine, University of Notre Dame Australia
  • Prof Sallie Lamb, University of Exeter
  • Mr Michael Ferraro, NeuRA, University of New South Wales
  • Dr Aidan Cashin, NeuRA, University of New South Wales
  • Dr Saurab Sharma, NeuRA, University of New South Wales

Keep up to date with the MEMOIR Trial and the latest chronic pain research:

The MEMOIR trial has been approved by the Ethics Review Committee (RPAH Zone) of the Sydney Local Health District, protocol number: X20-0325.

The MEMOIR Trial is supported by:

  • NeuRA
  • University of New South Wales
  • NHRMC
  • University of South Australia
  • University of Sydney
  • University of Notre Dame

Investigations into the firing behaviour of human motoneurones in health and after neurological inju

This basic science project aims to examine the behaviour of human motoneurones during sustained activation to reveal their mechanisms of recovery after activation. We will take the fundamental findings from this study and compare the behaviour of motoneurones innervating muscles affected by neurological injury such as spinal cord injury and stroke.

Control of coughing and expiratory muscles in spinal cord injury

Respiratory complications are the major cause of death for people with spinal cord injuries. People with a high level spinal cord injury are 150 times more likely to die from pneumonia than the general population. This is because after high level spinal cord injury, people have a reduced ability to cough and to clear secretions from the lungs. The major group of muscles that produce a cough are the abdominal muscles. If the abdominal muscles are paralysed after spinal cord injury then the strength of the cough will be severely reduced. In our lab, we are looking at ways to improve cough in people with spinal cord injury by using surface functional electrical stimulation of the abdominal muscles. We have shown that this type of stimulation can improve cough significantly. We are now looking for ways to further improve cough through muscle training as well as ways to develop a portable stimulator that would allow independent activation of a cough.

The effect of respiratory muscle training on respiratory health after spinal cord injury

After cervical spinal cord injury (SCI), the respiratory muscles are partly or completely paralysed. This has two major clinical consequences: a decreased ability to get air into the lungs and a decreased ability to cough and remove secretions. This results in a lifetime of recurrent respiratory tract infections (2/year/person) that often progress to pneumonia with frequent and extended hospital admissions. People with cervical SCI are 150 times more likely to die from respiratory complications than the general population, as many as 28% die within the first year after injury. For those that survive the first year, a cervical SCI has a lifetime cost of $9.5million, a large proportion of which is attributed to respiratory-related complications. A recent longitudinal study of people with cervical SCI showed that respiratory muscle weakness is associated with incidental pneumonia. Respiratory muscle weakness also causes dyspnoea (breathlessness) and sleep-disordered breathing, which is 4-10 times more prevalent in people with SCI than the able-bodied population. Therefore, there is an urgent need to identify a simple and cost-effective treatment for respiratory muscles weakness to prevent respiratory complications after SCI, improve quality of life and reduce the burden on the healthcare system.

Our primary aim is to determine definitively the effectiveness of training on respiratory muscle strength, respiratory physiology and health outcomes. To do this we will conduct a randomised controlled trial 2 times bigger than the largest previous study, of respiratory muscle resistive load training in individuals with acute and chronic cervical SCI. The project will provide critical new knowledge about the efficacy of a simple and inexpensive respiratory muscle training regime, which can be applied immediately in the hospital and community, to minimise respiratory morbidity in people with SCI. This project also provides a unique opportunity to investigate other consequential effects of long-term respiratory muscle training that have never been studied in people with SCI. These include effects on cough efficacy, sleep-disordered breathing, breathlessness, respiratory morbidity, respiratory health and neural drive to the diaphragm, as well as quality of life.

Syringomyelia

Syringomyelia is an enigmatic condition in which high pressure fluid-filled cysts form in the spinal cord, often after spinal cord injury or in congenital conditions where there is obstruction to cerebrospinal fluid flow near the brainstem. In collaboration with neurosurgeon Prof Marcus Stoodley, we are using magnetic resonance imaging, computational modelling and experimental models to understand how cerebrospinal fluid flow in the central nervous system is altered, and the mechanisms by which this gives rise to build-up of fluid in the spinal cord. • Honours and PhD projects are available to study the biomechanical and basic biological mechanisms of syringomyelia, using magnetic resonance imaging, experimental and computational modelling.

Defining the Causes and Developing New Treatments for People with Spinal Cord Injury and Sleep Apnoe

The prevalence of sleep apnoea in people with chronic quadriplegia is two to seven times higher than the general population. Optimal treatment approaches may also differ.

What else is happening in Neural injury research at NeuRA?

FEEL THE BUZZ IN THE AIR? US TOO.

The RESTORE Trial: Immersive Virtual Reality Treatment for Restoring Touch Perception in People with Discomplete Paraplegia

Chief Investigators: Associate Professor Sylvia Gustin, Prof James Middleton, A/Prof Zina Trost, Prof Ashley Craig, Prof Jim Elliott, Dr Negin Hesam-Shariati, Corey Shum and James Stanley While recognition of surviving pathways in complete injuries has tremendous implications for SCI rehabilitation, currently no effective treatments exist to promote or restore touch perception among those with discomplete SCI. The proposed study will address this need by developing and testing a novel intervention that can provide touch restoration via the primary source of sensory perception: the brain.Complete spinal cord injury (SCI) is associated with a complete loss of function such as mobility or sensation. In a recent discovery we revealed that 50% of people with complete SCI still have surviving somatosensory nerve fibres at the level of the spine. For those with complete SCI this is hopeful news as it means -- contrary to previous belief that communication to the brain had been severed by injury -- that the brain is still receiving messages. This new SCI type is labelled “discomplete SCI” -- a SCI person who cannot feel touch, but touch information is still forwarded from the foot to the brain. The project will use virtual reality (VR) in a way it has never been used before. We will develop the first immersive VR interface that simultaneously enhances surviving spinal somatosensory nerve fibres and touch signals in the brain in an effort to restore touch perception in people with discomplete SCI. In other words, immersive VR is being used to re-train the brain to identify the distorted signals from toe to head as sensation (touch). For example, participants will receive touch simulation in the real world (e.g., their toe) while at the same time receiving corresponding multisensory touch stimuli in the virtual world (e.g., experiencing walking up to kick a ball). This project is the first effort worldwide to restore touch sensation in 50% of individuals with complete injuries. The outcomes to be achieved from the current study will represent a cultural and scientific paradigmatic shift in terms of what can be expected from life with a spinal cord injury. In addition, the project allows potential identification of brain mechanisms that may ultimately represent direct targets for acute discomplete SCI rehabilitation, including efforts to preserve rather than restore touch perception following SCI. RESTORE consolidates the expertise of scientists, clinicians, VR developers and stakeholders from NeuRA and UNSW School of Psychology (A/Prof Sylvia Gustin, Dr Negin Hesam-Shariati), John Walsh Centre for Rehabilitation Research, Kolling Institute and University of Sydney (Prof James Middleton, Prof Ashley Craig and Prof Jim Elliott), Virginia Commonwealth University (A/Prof Zina Trost), Immersive Experience Laboratories LLC (Director Corey Shum) and James Stanley. If you are interested in being contacted about the RESTORE trial, please email A/Prof Sylvia Gustin (s.gustin@unsw.edu.au) and include your name, phone number, address, type of SCI (e.g., complete or incomplete), level of injury (e.g., T12) and duration of SCI (e.g., 5 years).
PROJECT