Prosthetics

HEALTH INFORMATION

Restoring balance function

WHAT WE KNOW

A prosthesis is an artificial device that replaces a missing body part. Technologies are constantly being developed to actively aid or restore movement to individuals suffering from muscular impairments or weakness, neurologic injury, or amputations.

There are a wide variety of prefabricated and custom-made prostheses. Due to modern advances in technology, prostheses are becoming lighter, stronger and more naturally functioning. Technological advances include the ‘energy storing foot’, the ‘microprocessor controlled knee’ and the ‘myo-electric’ (bionic) hand.

Much like a cochlear implant restores auditory function, a vestibular prosthesis restores balance function.

What else is happening in Prosthetics research at NeuRA?

FEEL THE BUZZ IN THE AIR? US TOO.

Abdominal muscle stimulation to improve bowel function in spinal cord injury

Bowel complications, resulting from impaired bowel function, are common for people living with a spinal cord injury (SCI). As a result, people with a SCI have high rates of bowel related illness, even compared with those with other neurological disorders. This includes high rates of abdominal pain, constipation, faecal incontinence and bloating. These problems lower the quality of life of people with a SCI and place a financial burden on the health system. A treatment that improves bowel function for people with a SCI should reduce illness, improve quality of life and lead to a large cost saving for health care providers. Bowel problems have traditionally been managed with manual and pharmacological interventions, such as digital rectal stimulation, enemas, and suppositories. These solutions are usually only partially effective, highlighting the need for improved interventions. The abdominal muscles are one of the major muscle groups used during defecation. Training the abdominal muscles should improve bowel function by increasing abdominal pressure. During our previous Abdominal FES research with people with a SCI, we observed that Abdominal FES appeared to lead to more consistent and effective bowel motion. However, this evidence remains anecdotal. As such, we are going to undertake a large randomised controlled trial to investigate the effectiveness of Abdominal FES to improve the bowel function of people with a SCI. This study will make use of a novel measurement system (SmartPill, Medtronic) that can be swallowed to measure whole gut and colonic transit time. We will also assess whether Abdominal FES can change constipation-related quality of life and the use of laxatives and manual procedures, as well as the frequency of defecation and the time taken. A positive outcome from this study is likely to lead to the rapid clinical translation of this technology for people living with a SCI.
PROJECT