Restoring balance function


Our Research

Non-Invasive Interfacing of Touch Sensors to Restore Tactile Sensation in Amputees

The dexterity of the human hand in object manipulation is unparalleled in the natural world. This dexterity is facilitated by an array of receptors embedded within the skin of each fingertip that provide information about the tactile world and informs the motor-control system. The loss of a hand or arm is a devastating event, and the aim of our new project is to develop a non-invasive prosthetic system that can provide sensory feedback in amputees to help guide movement of a prosthetic hand.

A new mouse model that determines the effects of a unilateral vestibular prosthesis on vestibular plasticity.

Much like a cochlear implant restores auditory function, a vestibular prosthesis restores balance function. It is not clear whether the limited results from vestibular prostheses is due the device not stimulating one component (the otoliths) of the vestibular system essential for self-repair. We will test mutant mice that lack otoliths to determine the importance of stimulating the otoliths in restoring function. This work will shape the future direction of prosthesis development.

See what’s going on at NeuRA


Cortical activity during balance tasks in ageing and clinical groups using functional near-infrared spectroscopy

Prof Stephen Lord, Dr Jasmine Menant Walking is not automatic and requires attention and brain processing to maintain balance and prevent falling over. Brain structure and function deteriorate with ageing and neurodegenerative disorders, in turn impacting both cognitive and motor functions.   This series of studies will investigate: How do age and/or disease- associated declines in cognitive functions affect balance control? How is this further impacted by psychological, physiological and medical factors (eg. fear, pain, medications)? How does the brain control these balance tasks?     Approach The experiments involve experimental paradigms that challenge cognitive functions of interest (eg.visuo-spatial working memory, inhibitory function). I use functional near-infrared spectroscopy to study activation in superficial cortical regions of interest (eg. prefrontal cortex, supplementary motor area…). The studies involve young and older people as well as clinical groups (eg.Parkinson’s disease).   Studies Cortical activity during stepping and gait adaptability tasks Effects of age, posture and task condition on cortical activity during reaction time tasks Influence of balance challenge and concern about falling on brain activity during walking Influence of lower limb pain/discomfort on brain activity during stepping   This research will greatly improve our understanding of the interactions between brain capacity, functions and balance control across ageing and diseases, psychological, physiological and medical factors, allows to identify targets for rehabilitation. It will also help identifying whether exercise-based interventions improve neural efficiency for enhanced balance control.