Vestibular balance

HEALTH INFORMATION

Correcting issues of the vestibular system

WHAT WE KNOW

The vestibular system includes the parts of the inner ear and brain that help control balance and eye movements. Our visual system works with our vestibular system to keep objects from blurring when our head moves and to keep us aware of our position when we walk or when we ride in a vehicle. The system may be damaged by disease, aging, or injury.

The vestibulo-ocular reflex (VOR) is important for maintaining visual stability during tasks that move the head rapidly and unpredictably, for example, as occurs during running or when driving on a bumpy road. The vestibular organs, one in each inner ear, sense rotational and linear head motion and move the eyes to compensate for passive head movements. The vestibular organ can be damaged by disease, degenerative conditions and by chemical or surgical interventions. When both vestibular organs are damaged it can be severely debilitating. The research in this laboratory has two closely related goals: 1) to understand the signal processing mechanisms that control the VOR by analysing vestibular-evoked eye movements and single-unit (vestibular nerve) recordings; and 2) to apply this knowledge of basic vestibular physiology to the diagnosis and treatment of balance disorders in humans.

OUR LATEST RESEARCH

Treating dizziness in older people

Despite effective treatments being available, up to 40% of older people with reported dizziness remain undiagnosed and untreated. A multidisciplinary assessment battery, with new validated assessments of vestibular impairments is required for diagnosing and treating older people with dizziness. This project will therefore aim to conduct a randomised-control trial of a multifaceted dizziness intervention based on a multidisciplinary assessment, and develop a multiple profile assessment of dizziness for use in Specialist Clinics.

Development of a take-home rehabilitation device that improves vision and balance in patients with i

This project will develop a rehabilitation device based on a training technique we invented, which has been shown to significantly normalise the vestibulo-ocular reflex (VOR) response in patients with vestibular organ lesions.

A new mouse model that determines the effects of a unilateral vestibular prosthesis on vestibular pl

Much like a cochlear implant restores auditory function, a vestibular prosthesis restores balance function. It is not clear whether the limited results from vestibular prostheses is due the device not stimulating one component (the otoliths) of the vestibular system essential for self-repair.

The effect of enhanced vestibular efferent transmission on plasticity of the mammalian vestibulo-ocu

We have identified a nerve-pathway crucial for balance adjustment and self-repair. We will test a mouse type that has this pathway genetically made more sensitive to determine whether stimulation of this pathway is a viable approach to improving recovery after balance loss in humans.

What else is happening in Vestibular balance research at NeuRA?

FEEL THE BUZZ IN THE AIR? US TOO.

Ten siblings. One third live (or have passed away) with dementia.

The scourge of dementia runs deep in Lorna Clement's family. Of the eleven children her dear parents raised, four live (or have passed away) with complications of the disease. Her mother also died of Alzheimer's disease, bringing the family total to five. This is the mystery of dementia - One family, with two very different ageing outcomes. You will have read that lifestyle is an important factor in reducing the risk of dementia. We also know diet is a key factor, and an aspect that Dr Ruth Peter's is exploring at NeuRA. Along with leading teams delivering high profile evidence synthesis work in the area of dementia risk reduction, Dr Peters has a particular interest in hypertension (that is, high blood pressure) and in the treatment of hypertension in older adults. “We have known for a while that treating high blood pressure reduces the risk of cardiovascular disease and stroke, but it is becoming clearer that controlling blood pressure may also help to reduce the risk of cognitive decline and dementia. Now we need to know what the best blood pressure is to protect brain health.” You are invited to read more about Lorna's story and Dr Peter's work, by clicking 'Read the full story' below. Please support dementia research at NeuRA Will you consider a gift today to help Dr Peter's unlock the secrets of healthy ageing and reduce the risk of dementia? Research into ageing and dementia at NeuRA will arm doctors and other medical professionals with the tools they need to help prevent dementia in our communities. Thank you for your support.
APPEAL