NeuRA Magazine #20

UNDERSTANDING SOFT TISSUE CHANGES IN CHILDREN

Dr Lauriane Jugé with a device used as part of the study

When human tissue, such as muscles or some organs, are affected by disease, they can become stiffer than surrounding muscle tissue. Traditionally, medical practitioners have used the palpation technique – using their hands to determine the firmness of tissue, for instance around the abdomen – to feel for changes in tissue stiffness in order to diagnose illness or disease.

While this is an effective technique, not all tissue is accessible to a physician’s hand. In these cases magnetic resonance elastography (MRE), a non-invasive medical imaging technique, has been developed to assess the stiffness of tissue such as the brain.

Prof Lynne Bilston’s team, which includes Dr Lauriane Jugé is particularly interested in changes in tissue stiffness in the brain and muscles and how this changes in neurological and muscle disorders. During their research they came to realise that while there is a lot of data on stiffness in adult tissue, there was little to none when it came to children. To answer this they are working on new methods to measure the properties of tissue when it is in use or under stress, either as a result of accident or disease.

One of the areas they are particularly interested in studying involves keeping children safe during car accidents. Current injury criteria and anthropomorphic test dummies, for example, are based on scaling adult anatomy to match children’s anatomy. Despite this, the dummies use adult tissue properties, even thought there is evidence that this can result in flawed injury criteria that cannot predict injury outcome in real children.

One of their current studies involves using MRE and diffusion tension imaging to find a more accurate way to assess and measure soft tissue changes in children. In doing this they hope to be able to quantify the mechanical properties and microstructure of tissues in healthy children in order to better predict the responses of these tissues in situations such as car accidents or disease. They’re confident that they will be able to fill in the critical gap in knowledge to so they can create accurate computational models of the body for use in child injury prevention, and other medically-related fields.

See what’s going on at NeuRA

FEEL THE BUZZ IN THE AIR? US TOO.

The cold case of schizophrenia - broken wide open!

‘It is like they were miraculously healed!’’ Schizophrenia is diagnosed by clinical observation of behaviour and speech. This is why NeuRA researchers are working hard to understand the biological basis of the illness. Through hours of work and in collaboration with doctors and scientists here and around the world, NeuRA has made an amazing breakthrough. For the first time, researchers have discovered the presence of antibodies in the brains of people who lived with schizophrenia. Having found these antibodies, it has led NeuRA researchers to ask two questions. What are they doing there? What should we do about the antibodies– help or remove them? This is a key breakthrough. Imagine if we are treating schizophrenia all wrong! It is early days, but can you imagine the treatment implications if we’ve identified a new biological basis for the disease? It could completely change the way schizophrenia is managed, creating new treatments that will protect the brain. More than this, could we be on the verge of discovering a ‘curable’ form of schizophrenia? How you can help We are so grateful for your loyal support of schizophrenia research in Australia, and today I ask if you will consider a gift today. Or, to provide greater confidence, consider becoming a Discovery Partner by making a monthly commitment. We believe there is great potential to explore these findings. Will you help move today’s breakthrough into tomorrow’s cure? To read more about this breakthrough, click ‘read the full story’ below. You are also invited to read ‘Beth’s story’, whose sweet son Marcus lived with schizophrenia, by clicking here.
APPEAL