NeuRA Magazine #20

UNDERSTANDING SOFT TISSUE CHANGES IN CHILDREN

Dr Lauriane Jugé with a device used as part of the study

When human tissue, such as muscles or some organs, are affected by disease, they can become stiffer than surrounding muscle tissue. Traditionally, medical practitioners have used the palpation technique – using their hands to determine the firmness of tissue, for instance around the abdomen – to feel for changes in tissue stiffness in order to diagnose illness or disease.

While this is an effective technique, not all tissue is accessible to a physician’s hand. In these cases magnetic resonance elastography (MRE), a non-invasive medical imaging technique, has been developed to assess the stiffness of tissue such as the brain.

Prof Lynne Bilston’s team, which includes Dr Lauriane Jugé is particularly interested in changes in tissue stiffness in the brain and muscles and how this changes in neurological and muscle disorders. During their research they came to realise that while there is a lot of data on stiffness in adult tissue, there was little to none when it came to children. To answer this they are working on new methods to measure the properties of tissue when it is in use or under stress, either as a result of accident or disease.

One of the areas they are particularly interested in studying involves keeping children safe during car accidents. Current injury criteria and anthropomorphic test dummies, for example, are based on scaling adult anatomy to match children’s anatomy. Despite this, the dummies use adult tissue properties, even thought there is evidence that this can result in flawed injury criteria that cannot predict injury outcome in real children.

One of their current studies involves using MRE and diffusion tension imaging to find a more accurate way to assess and measure soft tissue changes in children. In doing this they hope to be able to quantify the mechanical properties and microstructure of tissues in healthy children in order to better predict the responses of these tissues in situations such as car accidents or disease. They’re confident that they will be able to fill in the critical gap in knowledge to so they can create accurate computational models of the body for use in child injury prevention, and other medically-related fields.

See what’s going on at NeuRA

FEEL THE BUZZ IN THE AIR? US TOO.

Abdominal muscle stimulation to improve bowel function in spinal cord injury

Bowel complications, resulting from impaired bowel function, are common for people living with a spinal cord injury (SCI). As a result, people with a SCI have high rates of bowel related illness, even compared with those with other neurological disorders. This includes high rates of abdominal pain, constipation, faecal incontinence and bloating. These problems lower the quality of life of people with a SCI and place a financial burden on the health system. A treatment that improves bowel function for people with a SCI should reduce illness, improve quality of life and lead to a large cost saving for health care providers. Bowel problems have traditionally been managed with manual and pharmacological interventions, such as digital rectal stimulation, enemas, and suppositories. These solutions are usually only partially effective, highlighting the need for improved interventions. The abdominal muscles are one of the major muscle groups used during defecation. Training the abdominal muscles should improve bowel function by increasing abdominal pressure. During our previous Abdominal FES research with people with a SCI, we observed that Abdominal FES appeared to lead to more consistent and effective bowel motion. However, this evidence remains anecdotal. As such, we are going to undertake a large randomised controlled trial to investigate the effectiveness of Abdominal FES to improve the bowel function of people with a SCI. This study will make use of a novel measurement system (SmartPill, Medtronic) that can be swallowed to measure whole gut and colonic transit time. We will also assess whether Abdominal FES can change constipation-related quality of life and the use of laxatives and manual procedures, as well as the frequency of defecation and the time taken. A positive outcome from this study is likely to lead to the rapid clinical translation of this technology for people living with a SCI.
PROJECT