NeuRA Magazine #20

UNDERSTANDING SOFT TISSUE CHANGES IN CHILDREN

Dr Lauriane Jugé with a device used as part of the study

When human tissue, such as muscles or some organs, are affected by disease, they can become stiffer than surrounding muscle tissue. Traditionally, medical practitioners have used the palpation technique – using their hands to determine the firmness of tissue, for instance around the abdomen – to feel for changes in tissue stiffness in order to diagnose illness or disease.

While this is an effective technique, not all tissue is accessible to a physician’s hand. In these cases magnetic resonance elastography (MRE), a non-invasive medical imaging technique, has been developed to assess the stiffness of tissue such as the brain.

Prof Lynne Bilston’s team, which includes Dr Lauriane Jugé is particularly interested in changes in tissue stiffness in the brain and muscles and how this changes in neurological and muscle disorders. During their research they came to realise that while there is a lot of data on stiffness in adult tissue, there was little to none when it came to children. To answer this they are working on new methods to measure the properties of tissue when it is in use or under stress, either as a result of accident or disease.

One of the areas they are particularly interested in studying involves keeping children safe during car accidents. Current injury criteria and anthropomorphic test dummies, for example, are based on scaling adult anatomy to match children’s anatomy. Despite this, the dummies use adult tissue properties, even thought there is evidence that this can result in flawed injury criteria that cannot predict injury outcome in real children.

One of their current studies involves using MRE and diffusion tension imaging to find a more accurate way to assess and measure soft tissue changes in children. In doing this they hope to be able to quantify the mechanical properties and microstructure of tissues in healthy children in order to better predict the responses of these tissues in situations such as car accidents or disease. They’re confident that they will be able to fill in the critical gap in knowledge to so they can create accurate computational models of the body for use in child injury prevention, and other medically-related fields.

See what’s going on at NeuRA

FEEL THE BUZZ IN THE AIR? US TOO.

During three decades on Australian television, two simple words brought us to attention.

‘Hello daaaahling’. Outrageous, flamboyant, iconic – Jeanne Little captivated Australians everywhere with her unique style, cockatoo shrill voice and fashion sense. "Mum wasn't just the life of the party, she was the party.” Katie Little, Jeanne’s daughter remembers. This icon of Australian television brought a smile into Australian homes. Tragically, today Jeanne can't walk, talk or feed herself. She doesn't recognise anyone, with a random sound or laugh the only glimpse of who she truly is. Jeanne Little has Alzheimer's disease. The 1,000 Brains Study NeuRA is very excited to announce the 1,000 Brains Study, a ground-breaking research project to identify the elements in our brains that cause life-changing neurodegenerative diseases like Alzheimer’s, Parkinson’s and other dementias. This study will focus on the key unresolved question: why do some of us develop devastating neurodegenerative diseases, while others retain good brain health? The study will compare the genomes of people who have reached old age with healthy brains against the genomes of those who have died from neurodegenerative diseases, with post mortem examination of brain tissue taking place at NeuRA’s Sydney Brain Bank. More information on the study can be found here. Will you please support dementia research and the 1,000 Brains Study and help drive the future of genetics research in Australia? https://youtu.be/q7fTZIisgAY
APPEAL