Our response to COVID-19

We're supporting people to maintain their wellbeing and manage isolation.


Each tile includes a summary and discussion of the aims of current research projects at NeuRA.

If you’d like to be involved as a participant, please click here to find out about volunteering for research.

If you are a student and would like to conduct a similar project with one of our supervisors, click here to find out about studying at NeuRA.

Frailty, Ageing and Inflammation Trial for Health

Commencing in 2021, this open labelled pilot randomised controlled trial will look at the impact of fibre and antioxidants on frailty, inflammation and the microbiome.

Ageing Well In Australia

This project is underway and is recruiting 125 adults aged 60-70 from multicultural backgrounds. The interviews are conducted online on zoom and standardised surveys as well as qualitative questions are administered. A Dietary Inflammatory Index will be calculated via a collaboration with the University of South Carolina.

What is the analgesic effect of EEG neurofeedback for people with chronic pain? A systematic review

Researchers: A/Prof Sylvia Gustin, Dr Negin Hesam-Shariati, Dr Wei-Ju Chang, A/Prof James McAuley, Dr Andrew Booth, A/Prof Toby Newton-John, Prof Chin-Teng Lin, A/Prof Zina Trost

Chronic pain is a global health problem, affecting around one in five individuals in the general population. The understanding of the key role of functional brain alterations in the generation of chronic pain has led researchers to focus on pain treatments that target brain activity. Electroencephalographic (EEG) neurofeedback attempts to modulate the power of maladaptive EEG frequency powers to decrease chronic pain. Although several studies provide promising evidence, the effect of EEG neurofeedback on chronic pain is uncertain. This systematic review aims to synthesise the evidence from randomised controlled trials (RCTs) to evaluate the analgesic effect of EEG neurofeedback.

The search strategy will be performed on five electronic databases (Cochrane Central, MEDLINE, Embase, PsycInfo, and CINAHL) for published studies and on clinical trial registries for completed unpublished studies. We will include studies that used EEG neurofeedback as an intervention for people with chronic pain. Risk of bias tools will be used to assess methodological quality of the included studies. RCTs will be included if they have compared EEG neurofeedback with any other intervention or placebo control. The data from RCTs will be aggregated to perform a meta-analysis for quantitative synthesis. In addition, non-randomised studies will be included for a narrative synthesis. The data from non-randomised studies will be extracted and summarised in a descriptive table. The primary outcome measure is pain intensity assessed by self-report scales. Secondary outcome measures include depressive symptoms, anxiety symptoms, and sleep quality measured by self-reported questionnaires. Further, we will investigate the non-randomised studies for additional outcomes addressing safety, feasibility, and resting-state EEG analysis.

MODULATE: Altering the brains sensitivity to pain

Pain is the single most common reason for seeking medical attention. Under normal circumstances, pain acts to signal injury and is a protective response that prevents further damage and promotes tissue healing. People differ not only in their ability to detect and tolerate pain, but also in their ability to recover from an injury, with some people experiencing pain that outlasts the duration of tissue healing. Interventions to treat or cure chronic pain have had limited success.

Recent research has identified a novel cortical biomarker that could identify individuals at risk of developing chronic pain, which could be used to identify individuals at high risk of transitioning from acute to chronic pain (PREDICT project). However, whether a causal relationship exists between this cortical biomarker and pain is unknown.

The pain biomarker is based on rhythmic patterns of electrical activity in the brain and is measured using electroencephalography (EEG). Previous research suggests that the speed of this rhythmic activity can be altered through the administration of nicotine. MODULATE will attempt to alter the speed of the brain’s rhythmic activity, using nicotine gum, and observe the impact on pain. The project will help determine whether a causal relationship exists between the biomarker and pain.


PREDICT: A novel cortical biomarker signature for predicting pain sensitivity

Temporomandibular disorder (TMD) is the second most common musculoskeletal pain condition and is associated with pain and tenderness of the jaw. Although a number of biological factors have shown an association with chronic TMD in cross-sectional and case control studies, there are currently no biomarkers that can predict the development of chronic symptoms. Because of the difficulty in treating chronic pain, development of brain signal predictive biomarkers is of growing interest.

The PREDICT project will aim to develop a predictive biomarker signature of pain severity and duration using two commonly available techniques – electroencephalogram (EEG) and transcranial magnetic stimulation (TMS) – and perform initial clinical validation in first onset TMD. The biomarker could have utility in identifying patients at high risk of transitioning from acute to chronic pain and has additional potential for clinical application in the treatment and prevention of chronic pain.

This project will be carried out in collaboration with a team at the University of Maryland, Baltimore lead by A/Prof David Seminowicz (see more information here).

PREDICT Publications

Seminowicz DA, Bilska K, Chowdhury NS, Skippen P, Millard SK, Chiang A, Chen S, Furman AJ, & Schabrun SM. (2020). A novel cortical biomarker signature for predicting pain sensitivity: protocol for the PREDICT longitudinal analytical validation study. Pain Reports, 5(4), e833. doi: 10.1097/PR9.0000000000000833

The RESTORE Trial: Immersive Virtual Reality Treatment for Restoring Touch Perception in People with

Chief Investigators: Associate Professor Sylvia Gustin, Prof James Middleton, A/Prof Zina Trost, Prof Ashley Craig, Prof Jim Elliott, Dr Negin Hesam-Shariati, Corey Shum and James Stanley

While recognition of surviving pathways in complete injuries has tremendous implications for SCI rehabilitation, currently no effective treatments exist to promote or restore touch perception among those with discomplete SCI. The proposed study will address this need by developing and testing a novel intervention that can provide touch restoration via the primary source of sensory perception: the brain.Complete spinal cord injury (SCI) is associated with a complete loss of function such as mobility or sensation. In a recent discovery we revealed that 50% of people with complete SCI still have surviving somatosensory nerve fibres at the level of the spine. For those with complete SCI this is hopeful news as it means — contrary to previous belief that communication to the brain had been severed by injury — that the brain is still receiving messages. This new SCI type is labelled “discomplete SCI” — a SCI person who cannot feel touch, but touch information is still forwarded from the foot to the brain.

The project will use virtual reality (VR) in a way it has never been used before. We will develop the first immersive VR interface that simultaneously enhances surviving spinal somatosensory nerve fibres and touch signals in the brain in an effort to restore touch perception in people with discomplete SCI. In other words, immersive VR is being used to re-train the brain to identify the distorted signals from toe to head as sensation (touch). For example, participants will receive touch simulation in the real world (e.g., their toe) while at the same time receiving corresponding multisensory touch stimuli in the virtual world (e.g., experiencing walking up to kick a ball).

This project is the first effort worldwide to restore touch sensation in 50% of individuals with complete injuries. The outcomes to be achieved from the current study will represent a cultural and scientific paradigmatic shift in terms of what can be expected from life with a spinal cord injury. In addition, the project allows potential identification of brain mechanisms that may ultimately represent direct targets for acute discomplete SCI rehabilitation, including efforts to preserve rather than restore touch perception following SCI.

RESTORE consolidates the expertise of scientists, clinicians, VR developers and stakeholders from NeuRA and UNSW School of Psychology (A/Prof Sylvia Gustin, Dr Negin Hesam-Shariati), John Walsh Centre for Rehabilitation Research, Kolling Institute and University of Sydney (Prof James Middleton, Prof Ashley Craig and Prof Jim Elliott), Virginia Commonwealth University (A/Prof Zina Trost), Immersive Experience Laboratories LLC (Director Corey Shum) and James Stanley.

If you are interested in being contacted about the RESTORE trial, please email A/Prof Sylvia Gustin (s.gustin@unsw.edu.au) and include your name, phone number, address, type of SCI (e.g., complete or incomplete), level of injury (e.g., T12) and duration of SCI (e.g., 5 years).