Digitally created image of a double helix

About Us


Mission Statement
“By the end of 2010, GRA will be pre-eminent as the major Australian genetic materials repository and the preferred supplier of DNA and cell lines derived from comprehensively phenotyped diseased and normal subjects”.

In 2007, GRA officially opened for general use to provide researchers with a central facility for the processing, long-term secure storage and distribution of human genetic samples (DNA & Cell lines) for both academic and commercial users. Services include the production and provision of immortalised lymphoblast cell lines and DNA samples. No equivalent facility exists in Australia to provide these services yet they form an essential part of all genetic and epidemiological studies that aim to deliver new knowledge and improved health care outcomes.

Aims and Objectives
The GRA facility will fill an essential ‘missing link’ in the translation of population and pedigree based studies into genetic and genomic investigations. GRA will stimulate and facilitate world-class collaborative health and medical research in Australia and internationally through the production and provision of genetic resources along with relevant clinical or epidemiological information. GRA will provide a key resource for studies that are emerging from the biotechnology revolution, including the growing fields of pharmacogenomics and personalised medicine. The Repositories will grow to be an integral part of research in molecular and clinical genetics at both diagnostic and therapeutic levels.
Nature and Scope of Activities
GRA provides researchers with a central facility for the processing, long-term secure storage and distribution of human genetic samples (DNA & Cell lines). This includes the production and provision of immortalised lymphoblast cell lines and DNA samples. Samples can be shipped to the facility from the point of collection, whether at the investigator’s site or remote from it. DNA and immortalised cell lines will be generated by GRA and either stored for distribution to qualified investigators or, in the case of fee-for-service work, be delivered to the investigator. GRA will provide primary secure storage for this material. The Repositories provide a source of clinically validated but de-identified patient material, with complete phenotypic descriptors of disease and family or cohort structure that will permit genetic analyses for disease gene identification. In addition, GRA provides a facility, for researchers who are not themselves able to pursue DNA based research, to deposit materials for collaborative research.

Facility Staff
GRA is under the direction of the Facility Manager, Steve Turner. The GRA facility has 1 full-time Research Assistant, 3 full-time Technical Assistants and 1 casual Technical Assistant.

Genetic Repositories Australia, NHMRC Enabling Grant – Special Facilities, Grant ID 401184, 2006-2010. The Chief Investigators on the NHMRC Enabling Grant are Prof Peter Schofield (Neuroscience Research Australia & University of New South Wales), Assoc Prof Juleen Cavanaugh (Australian National University, Medical School, Canberra Hospital), Dr Susan Forrest (Australian Genome Research Facility) and Prof John Hopper (Centre for Genetic Epidemiology, University of Melbourne).

Publications arising from access to GRA Services and/or Material (DNA and/or cell lines) are to be forwarded to the GRA Facility Manager. A list of publications arising from GRA supported projects is provided below:

Haobo Zhang, Julian N Trollor, Wei Wen, Wanlin Zhu, John D Crawford, Nicole A Kochan, Melissa J Slavin, Henry Brodaty, Simone Reppermund, Kristan Kang, Karen A Mather, Perminder S Sachdev (2010). Grey matter atrophy of basal forebrain and hippocampus on mild cognitive impairment. Journal of Neurology, Neurosurgery and Psychiatry jnnp.2010.217133

Sachdev PS, Brodaty H, Reppermund S, Kochan NA, Trollor JN, Draper B, Slavin MJ, Crawford J, Kang K, Broe GA, Mather KA, Lux O; the Memory and Ageing Study Team (2010). The Sydney Memory and Ageing Study (MAS): methodology and baseline medical and neuropsychiatric characteristics of an elderly epidemiological non-demented cohort of Australians aged 70-90 years. International Psychogeriatrics 2010 Jul 19:1-17.

Sachdev PS, Lammel A, Trollor JN, Lee T, Wright MJ, Ames D, Wen W, Martin NG, Brodaty H, Schofield PR; OATS research team (2009). A comprehensive neuropsychiatric study of elderly twins: the Older Australian Twins Study. Twin Research and Human Genetics 2009 Dec 12(6):573-82.

Two recent reviews recognising the value of lymphoblastoid cell lines (LCLs) and DNA Biobanks as an important resource for genetic and functional research and specifically which highlight GRA and its services are listed below:

Sie L, Loong S and Tan EK (2009). Utility of lymphoblastoid cell lines Journal of Neuroscience Research 2009 Jul 87(9):1953-9.

Sivakumeran, T.A and Lyengar, S.K. (2008). DNA Bank. Wiley Encyclopedia of Clinical Trials. 1-11.

The Future
Our vision is to continue to expand GRA as an ongoing national research enabling facility that will provide a resource to enhance the research and collaborative capacity of publicly-funded research in the study of health and disease via processing and distributing clinical and epidemiological materials. Our goal is to provide appropriately consented bio-specimen resources through an ethically-based system that will both protect the rights and privacy of participants and allow for open access by the research community to expedite research into the causes and treatments of disease in Australia.


See what’s going on at NeuRA


Brain and Knee Muscle Weakness Study

Why Does Quadriceps Weakness Persist after Total Knee Replacement? An Exploration of Neurophysiological Mechanisms Total knee replacement is a commonly performed surgery for treating end-staged knee osteoarthritis. Although most people recover well after surgery, weakness of the quadriceps muscles (the front thigh muscles) persists long after the surgery (at least for 12 months), despite intensive physiotherapy and exercise. Quadriceps muscle weakness is known to be associated with more severe pain and greatly affect daily activities. This study aims to investigate the mechanisms underlying weakness of the quadriceps muscles in people with knee osteoarthritis and total knee replacement. We hope to better understand the relationship between the changes of the brain and a loss of quadriceps muscle strength after total knee replacement. The study might be a good fit for you if you: Scheduled to undergo a total knee replacement; The surgery is scheduled within the next 4 weeks; Do not have a previous knee joint replacement in the same knee; Do not have high tibial osteotomy; Do not have neurological disorders, epilepsy, psychiatric conditions, other chronic pain conditions; Do not have metal implants in the skull; Do not have a loss of sensation in the limbs. If you decide to take part you would: Be contacted by the researcher to determine your eligibility for the study Be scheduled for testing if you are eligible and willing to take part in the study Sign the Consent Form when you attend the first testing session Attend 3 testing sessions (approximately 2 hours per session): 1) before total knee replacement, 2) 3 months and 3) 6 months after total knee replacement. The testing will include several non-invasive measures of brain representations of the quadriceps muscles, central pain mechanisms, and motor function and questionnaires. Will I be paid to take part in the research study? You will be reimbursed ($50.00 per session) for travel and parking expenses associated with the research study visits. If you would like more information or are interested in being part of the study, please contact: Name: Dr Wei-Ju Chang Email: Phone: 02 9399 1260 This research is being funded by the Physiotherapy Research Foundation.