Our response to COVID-19

We're supporting people to maintain their wellbeing and manage isolation.

Digitally created image of a double helix

Genetic Repositories Australia (GRA)

FACILITY INFORMATION

Genetic-Repositories-Australia-GRA

Genetic Repositories Australia (GRA) is a national genetic repository for DNA and cell lines derived from appropriately consented disease-specific and population-based studies. GRA has been supported by a $2 million National Health & Medical Research Council (NHMRC) Enabling Facility Grant and is based at Neuroscience Research Australia (NeuRA).

The Chief Investigators on the NHMRC Enabling Grant 401184 are Prof Peter Schofield (Neuroscience Research Australia and University of New South Wales), Assoc Prof Juleen Cavanaugh (Australian National University), Dr Susan Forrest (Australian Genome Research Facility) and Prof John Hopper (University of Melbourne).

Change of funding arrangements for NHMRC Enabling Facilities
Important changes in NHMRC Support Mechanisms have been implemented; please refer to the following letter for further information.

NHMRC Support Mechanisms PDF

Obtaining cost estimates for NHMRC Project Grant submissions
If you are intending to submit a Project Grant application which involves the use of Genetic Repositories Australia, then please contact the facility via gra.notify@neura.edu.au or (02 9399 1725) as soon as possible to discuss your proposal and to obtain a cost estimate.

Staff
Kerrie Pierce

See what’s going on at NeuRA

FEEL THE BUZZ IN THE AIR? US TOO.

What is the analgesic effect of EEG neurofeedback for people with chronic pain? A systematic review

Researchers: A/Prof Sylvia Gustin, Dr Negin Hesam-Shariati, Dr Wei-Ju Chang, A/Prof James McAuley, Dr Andrew Booth, A/Prof Toby Newton-John, Prof Chin-Teng Lin, A/Prof Zina Trost Chronic pain is a global health problem, affecting around one in five individuals in the general population. The understanding of the key role of functional brain alterations in the generation of chronic pain has led researchers to focus on pain treatments that target brain activity. Electroencephalographic (EEG) neurofeedback attempts to modulate the power of maladaptive EEG frequency powers to decrease chronic pain. Although several studies provide promising evidence, the effect of EEG neurofeedback on chronic pain is uncertain. This systematic review aims to synthesise the evidence from randomised controlled trials (RCTs) to evaluate the analgesic effect of EEG neurofeedback. The search strategy will be performed on five electronic databases (Cochrane Central, MEDLINE, Embase, PsycInfo, and CINAHL) for published studies and on clinical trial registries for completed unpublished studies. We will include studies that used EEG neurofeedback as an intervention for people with chronic pain. Risk of bias tools will be used to assess methodological quality of the included studies. RCTs will be included if they have compared EEG neurofeedback with any other intervention or placebo control. The data from RCTs will be aggregated to perform a meta-analysis for quantitative synthesis. In addition, non-randomised studies will be included for a narrative synthesis. The data from non-randomised studies will be extracted and summarised in a descriptive table. The primary outcome measure is pain intensity assessed by self-report scales. Secondary outcome measures include depressive symptoms, anxiety symptoms, and sleep quality measured by self-reported questionnaires. Further, we will investigate the non-randomised studies for additional outcomes addressing safety, feasibility, and resting-state EEG analysis.
PROJECT