NeuRA Imaging Centre

FACILITY INFORMATION

NeuRA has made a 3T MRI scanner available for research since 2003. The current scanner is a Philips 3T TX MRI (upgraded May 2010).

The facility currently operates for research 50% of the time and is open for research to scientists on a merit-based, user pays basis. It supports an active MRI research community of researchers from UNSW, The University of Sydney, Macquarie University and The University of Western Sydney as well as researchers from interstate and international sites as required.

LATEST NEWS AND EVENTS

Workshop on Magnetic Resonance Spectroscopy

A two day course on magnetic resonance spectroscopy will be held at Neuroscience Research Australia, on Tuesday 28th and Wednesday 29th of November 2017.

Troubleshooting those MRI button boxes

A two day course on magnetic resonance spectroscopy will be held at Neuroscience Research Australia, on Tuesday 28th and Wednesday 29th of November 2017.

Collect your MRI data via Hippocampus

A two day course on magnetic resonance spectroscopy will be held at Neuroscience Research Australia, on Tuesday 28th and Wednesday 29th of November 2017.

New MRI simulator computer

A two day course on magnetic resonance spectroscopy will be held at Neuroscience Research Australia, on Tuesday 28th and Wednesday 29th of November 2017.

See what’s going on at NeuRA

FEEL THE BUZZ IN THE AIR? US TOO.

The cold case of schizophrenia - broken wide open!

‘It is like they were miraculously healed!’’ Schizophrenia is diagnosed by clinical observation of behaviour and speech. This is why NeuRA researchers are working hard to understand the biological basis of the illness. Through hours of work and in collaboration with doctors and scientists here and around the world, NeuRA has made an amazing breakthrough. For the first time, researchers have discovered the presence of antibodies in the brains of people who lived with schizophrenia. Having found these antibodies, it has led NeuRA researchers to ask two questions. What are they doing there? What should we do about the antibodies– help or remove them? This is a key breakthrough. Imagine if we are treating schizophrenia all wrong! It is early days, but can you imagine the treatment implications if we’ve identified a new biological basis for the disease? It could completely change the way schizophrenia is managed, creating new treatments that will protect the brain. More than this, could we be on the verge of discovering a ‘curable’ form of schizophrenia? How you can help We are so grateful for your loyal support of schizophrenia research in Australia, and today I ask if you will consider a gift today. Or, to provide greater confidence, consider becoming a Discovery Partner by making a monthly commitment. We believe there is great potential to explore these findings. Will you help move today’s breakthrough into tomorrow’s cure? To read more about this breakthrough, click ‘read the full story’ below. You are also invited to read ‘Beth’s story’, whose sweet son Marcus lived with schizophrenia, by clicking here.
APPEAL

PUBLICATIONS

Characterizing Sexual Behavior in Frontotemporal Dementia.

Ahmed RM, Kaizik C, Irish M, Mioshi E, Dermody N, Kiernan MC, Piguet O, Hodges JR

We aimed to systematically quantify changes in sexual behavior, including current symptoms and changes from prior diagnoses, in behavioral-variant (bvFTD) and semantic dementia (SD), compared to Alzheimer's disease (AD). Overall loss of affection, reduced initiation of sexual activity, and responsiveness is an overwhelming feature of bvFTD. In contrast, aberrant or unusual sexual behavior is observed in the minority of bvFTD patients. The underlying pathophysiology of these changes likely reflects structural and functional changes in frontoinsular and limbic regions including the hypothalamus.

Eating behavior in frontotemporal dementia: Peripheral hormones vs hypothalamic pathology.

Ahmed RM, Latheef S, Bartley L, Irish M, Halliday GM, Kiernan MC, Hodges JR, Piguet O

To contrast the relationships of hormonal eating peptides and hypothalamic volumes to eating behavior and metabolic changes (body mass index [BMI]) in behavioral variant frontotemporal dementia (bvFTD) and semantic variant primary progressive aphasia (svPPA). Eating abnormalities are multifactorial in FTD. In bvFTD, they are in part related to hypothalamic degeneration, with potential disintegration of the network connections between the hypothalamus and orbitofrontal cortex/reward pathways. In svPPA, although hypothalamic volumes are preserved, this group experiences elevated AgRP levels similar to bvFTD, which predicts BMI in both groups. This finding highlights the potential key role of AgRP in eating and metabolic changes and provides a potential target for treatment to modify disease progression.

View all publications