NeuRA Imaging


No scanning can proceed until appropriate research ethics has been obtained. The primary Human Research Ethics Committee for this facility is UNSW HREC.

All scans are read by a radiologist. You will therefore need to indicate in your ethics application the process by which you will deal with an adverse finding. This includes making sure that each research subject consents in writing to their radiology report being released to the researcher who is named as being responsible for report follow-up.

For further information on UNSW HREC issues please see this document.

See what’s going on at NeuRA


Cortical activity during balance tasks in ageing and clinical groups using functional near-infrared spectroscopy

Prof Stephen Lord, Dr Jasmine Menant Walking is not automatic and requires attention and brain processing to maintain balance and prevent falling over. Brain structure and function deteriorate with ageing and neurodegenerative disorders, in turn impacting both cognitive and motor functions.   This series of studies will investigate: How do age and/or disease- associated declines in cognitive functions affect balance control? How is this further impacted by psychological, physiological and medical factors (eg. fear, pain, medications)? How does the brain control these balance tasks?     Approach The experiments involve experimental paradigms that challenge cognitive functions of interest (eg.visuo-spatial working memory, inhibitory function). I use functional near-infrared spectroscopy to study activation in superficial cortical regions of interest (eg. prefrontal cortex, supplementary motor area…). The studies involve young and older people as well as clinical groups (eg.Parkinson’s disease).   Studies Cortical activity during stepping and gait adaptability tasks Effects of age, posture and task condition on cortical activity during reaction time tasks Influence of balance challenge and concern about falling on brain activity during walking Influence of lower limb pain/discomfort on brain activity during stepping   This research will greatly improve our understanding of the interactions between brain capacity, functions and balance control across ageing and diseases, psychological, physiological and medical factors, allows to identify targets for rehabilitation. It will also help identifying whether exercise-based interventions improve neural efficiency for enhanced balance control.