Assoc Prof Danny Eckert

TEAM LEADER PROFILE

Principal Research Scientist, NeuRA Associate Professor, UNSW
R.D. Wright Fellow, NHMRC

+612 9399 1814


Associate Professor Danny Eckert has been actively involved in human sleep and respiratory physiology research since 2001. In 2006, he completed his PhD at the University of Adelaide, based at the Adelaide Institute for Sleep Health. He was awarded the Thoracic Society of Australia and New Zealand Allen and Hanburys Respiratory Research Fellowship, followed by an NHMRC CJ Martin Fellowship to pursue postdoctoral studies.

After three years of postdoctoral training at the Brigham and Women’s Hospital, Harvard Medical School, he was promoted to Faculty as Assistant Professor. In late 2011 Assoc Prof Eckert returned to Australia to establish a comprehensive sleep and respiratory physiology research program at NeuRA. His dedicated team continues to advance knowledge into the causes of sleep apnoea and develop new treatments. He currently serves on the board of the Australasian Sleep Association, the peak profession boady and is Chair of the Research Committee.

Projects Assoc Prof Danny Eckert is currently involved with

CURRENT PROJECTS

Studies of voluntary and involuntary control of human breathing

Breathing is a complex motor task that needs to be coordinated at all times while we eat, speak, exercise and even during sleep. The breathing muscles are controlled automatically from the brainstem during normal breathing but can also be controlled voluntarily from the motor cortex. The way these two drives to the breathing muscles interact is still not well understood. While there is some evidence that there are at least two independent pathways, and that integration of the pathways occurs at the spinal cord, there is some uncertainty about whether these pathways may have some interaction in the brainstem. Our current experiments are looking at voluntary and involuntary drive to the breathing muscles to try to answer this fundamental question about the neural control of breathing. In addition we are looking at the potential cortical contributions to resting breathing in respiratory disorders.

READ MORE

Studies of voluntary and involuntary control of human breathing

Control of the neural drive to human breathing muscles in disorders such as obstructive sleep apnoea

Obstructive sleep apnoea is a sleep disorder that affects more than 4% of the population and can lead to symptoms from daytime drowsiness to high blood pressure. People with sleep apnoea are often not breathing normally during sleep and may experience periods where the airway closes and they are unable to breathe. In severe sleep apnoea this can occur 50-60 times each hour. That is once each minute. The closure of the upper airway is thought to be due to a number of factors, one of which is that the neural drive to the airway muscles is insufficient in people with sleep apnoea. In our lab, we have made the first extensive recordings from the major muscle of the upper airway, genioglossus. We have shown that the neural drive to this muscle is very complex, more so than any limb muscle. At NeuRA, we have also pioneered new methods to image this muscle using fMRI and ultrasound. We are now planning to look at how changes in muscle architecture and mechanics relate to the neural drive to the muscle and whether that relationship is maintained in people with sleep apnoea.

READ MORE

Control of the neural drive to human breathing muscles in disorders such as obstructive sleep apnoea

The effect of respiratory muscle training on respiratory health after spinal cord injury

After cervical spinal cord injury (SCI), the respiratory muscles are partly or completely paralysed. This has two major clinical consequences: a decreased ability to get air into the lungs and a decreased ability to cough and remove secretions. This results in a lifetime of recurrent respiratory tract infections (2/year/person) that often progress to pneumonia with frequent and extended hospital admissions. People with cervical SCI are 150 times more likely to die from respiratory complications than the general population, as many as 28% die within the first year after injury. For those that survive the first year, a cervical SCI has a lifetime cost of $9.5million, a large proportion of which is attributed to respiratory-related complications. A recent longitudinal study of people with cervical SCI showed that respiratory muscle weakness is associated with incidental pneumonia. Respiratory muscle weakness also causes dyspnoea (breathlessness) and sleep-disordered breathing, which is 4-10 times more prevalent in people with SCI than the able-bodied population. Therefore, there is an urgent need to identify a simple and cost-effective treatment for respiratory muscles weakness to prevent respiratory complications after SCI, improve quality of life and reduce the burden on the healthcare system.

Our primary aim is to determine definitively the effectiveness of training on respiratory muscle strength, respiratory physiology and health outcomes. To do this we will conduct a randomised controlled trial 2 times bigger than the largest previous study, of respiratory muscle resistive load training in individuals with acute and chronic cervical SCI. The project will provide critical new knowledge about the efficacy of a simple and inexpensive respiratory muscle training regime, which can be applied immediately in the hospital and community, to minimise respiratory morbidity in people with SCI. This project also provides a unique opportunity to investigate other consequential effects of long-term respiratory muscle training that have never been studied in people with SCI. These include effects on cough efficacy, sleep-disordered breathing, breathlessness, respiratory morbidity, respiratory health and neural drive to the diaphragm, as well as quality of life.

READ MORE

The effect of respiratory muscle training on respiratory health after spinal cord injury

Obstructive Sleep Apnoea Imaging

We have developed novel imaging methods to measure the stiffness and movement of the upper airway muscles, and are using these together with measures of pharyngeal sensation, and electromyography to determine the patient-specific causes of obstructive sleep apnoea. We aim to use this information to tailor treatments for patients. One such treatment is a mandibular advancement splint, but currently it’s not possible to predict who will benefit from use a splint. We have a major project that aims to predict splint treatment outcome, based on our novel imaging methods.• Honours and PhD projects are available to study the neural, biomechanical and physiological aspects of obstructive sleep apnoea, including computational modelling

READ MORE

Obstructive Sleep Apnoea Imaging

NeuroSleep: A NHMRC Centre for Research Excellence

This project aims to understand the bidirectional relationship between sleep and the brain to test and develop new approaches to treatment for sleep disruption across a range of medical disorders.  

READ MORE

NeuroSleep: A NHMRC Centre for Research Excellence

Defining the Causes and Developing New Treatments for People with Spinal Cord Injury and Sleep Apnoe

The prevalence of sleep apnoea in people with chronic quadriplegia is two to seven times higher than the general population. Optimal treatment approaches may also differ.

READ MORE

Defining the Causes and Developing New Treatments for People with Spinal Cord Injury and Sleep Apnoea

Upper-Airway Reflexes and Muscle Control

We are conducting research to understand how important reflexes in the upper airway function to gain insight into the causes of obstructive sleep apnoea.

READ MORE

Upper-Airway Reflexes and Muscle Control

Effect of Morphine on Obstructive Sleep Apnoea

The goal of this project is to investigate the effects of opioids on upper airway muscle activity, respiratory control, and breathing during sleep in patients with obstructive sleep apnoea.

READ MORE

Effect of Morphine on Obstructive Sleep Apnoea

Sedatives and Sleep Apnoea

We are conducting several studies to examine the effects of common sleeping pills on the upper airway muscles and breathing during sleep.

READ MORE

Sedatives and Sleep Apnoea

Determining new targets and approaches for treating sleep apnoea

We are running a range of projects to determine how existing treatments for sleep apnoea work so that we can optimise therapy and improve treatment success.

READ MORE

Determining new targets and approaches for treating sleep apnoea

Understanding the effects of sleep disruption in people with Multiple Sclerosis

Investigating the role that sleep disruption plays in people with Multiple Sclerosis

READ MORE

Understanding the effects of sleep disruption in people with Multiple Sclerosis

NEW APPROACHES TO TREATING SLEEP APNOEA

EFFECTS OF LOW DOSE MORPHINE ON PERCEIVED SLEEP QUALITY IN PEOPLE WITH REFRACTORY BREATHLESSNESS

FACEBOOK

AUSTRALASIAN SLEEP ASSOCIATION

SLEEP HEALTH FOUNDATION

RESEARCH TEAM

Richard Lim

RICHARD LIM Honours student

Ahmad Bamagoos

AHMAD BAMAGOOS PhD student

Peter Burke

PETER BURKE Postdoctoral Fellow

Chinh Nguyen

CHINH NGUYEN NeuroSleep NHMRC CRE Postdoctoral Fellow

Sophie Carter

SOPHIE CARTER PhD student

Amal Osman

AMAL OSMAN PhD student

Jason Amatoury

DR JASON AMATOURY NeuroSleep NHMRC CRE Postdoctoral Fellow

Ben Tong

BEN TONG Sleep Lab Manager

Niru Wijesuriya

DR NIRU WIJESURIYA Postdoctoral Fellow

Jayne Carberry

DR JAYNE CARBERRY NeuroSleep NHMRC CRE Postdoctoral Fellow

PUBLICATIONS

Zopiclone Increases the Arousal Threshold without Impairing Genioglossus Activity in Obstructive Sleep Apnea.

Carter SG, Berger MS, Carberry JC, Bilston LE, Butler JE, Tong BK, Martins RT, Fisher LP, McKenzie DK, Grunstein RR, Eckert DJ

To determine the effects of the nonbenzodiazepine sedative zopiclone on the threshold to arousal with increasing respiratory effort and genioglossus muscle activity and to examine potential physiological factors mediating disparate effects of zopiclone on obstructive sleep apnea (OSA) severity between patients. In a group of patients with predominantly severe OSA, zopiclone increased the arousal threshold without reducing genioglossus muscle activity or its responsiveness to negative pharyngeal pressure. These properties may be beneficial in some patients with OSA with certain pathophysiological characteristics but may worsen hypoxemia in others.

Functional role of neural injury in obstructive sleep apnea.

Saboisky JP, Butler JE, Gandevia SC, Eckert DJ

The causes of obstructive sleep apnea (OSA) are multifactorial. Neural injury affecting the upper airway muscles due to repetitive exposure to intermittent hypoxia and/or mechanical strain resulting from snoring and recurrent upper airway closure have been proposed to contribute to OSA disease progression. Multiple studies have demonstrated altered sensory and motor function in patients with OSA using a variety of neurophysiological and histological approaches. However, the extent to which the alterations contribute to impairments in upper airway muscle function, and thus OSA disease progression, remains uncertain. This brief review, primarily focused on data in humans, summarizes: (1) the evidence for upper airway sensorimotor injury in OSA and (2) current understanding of how these changes affect upper airway function and their potential to change OSA progression. Some unresolved questions including possible treatment targets are noted.

Defining phenotypic causes of obstructive sleep apnea. Identification of novel therapeutic targets.

Eckert DJ, White DP, Jordan AS, Malhotra A, Wellman A

To define carefully the proportion of key anatomic and nonanatomic contributions in a relatively large cohort of patients with OSA and control subjects to identify pathophysiologic targets for future novel therapies for OSA. This study confirms that OSA is a heterogeneous disorder. Although Pcrit-anatomy is an important determinant, abnormalities in nonanatomic traits are also present in most patients with OSA.

View all publications