Our response to COVID-19

We're supporting people to maintain their wellbeing and manage isolation.

Assoc Prof Janet Taylor

PUBLICATIONS

Time course of human motoneuron recovery after sustained low-level voluntary activity.

Héroux ME, Butler AA, Gandevia SC, Taylor JL, Butler JE

Motoneurons often fire repetitively and for long periods. In sustained voluntary contractions the excitability of motoneurons declines. We provide the first detailed description of the time course of human motoneuron recovery after sustained activity at a constant discharge rate. We recorded the discharge of single motor units (MUs, n = 30) with intramuscular wire electrodes inserted in triceps brachii during weak isometric contractions. Subjects (n = 15) discharged single MUs at a constant frequency (∼10 Hz) with visual feedback for prolonged durations (3-7 min) until rectified surface electromyogram (sEMG) of triceps brachii increased by ∼100%. After a rest of 1-2, 15, 30, 60, 120, or 240 s, subjects briefly resumed the contraction with the target MU at the same discharge rate. Each MU was tested with three to four rest periods. The magnitude of sEMG was increased when contractions were resumed, and the target motoneuron discharged at the test frequency following rest intervals of 2-60 s (P = 0.001-0.038). The increased sEMG indicates that greater excitatory drive was needed to discharge the motoneuron at the test rate. The increase in EMG recovered exponentially with a time constant of 28 s but did not return to baseline even after a rest period of ∼240 s. Thus the decline in motoneuron excitability from a weak contraction takes several minutes to recover fully.

Arm posture-dependent changes in corticospinal excitability are largely spinal in origin.

Nuzzo JL, Trajano GS, Barry BK, Gandevia SC, Taylor JL

Biceps brachii motor evoked potentials (MEPs) from cortical stimulation are influenced by arm posture. We used subcortical stimulation of corticospinal axons to determine whether this postural effect is spinal in origin. While seated at rest, 12 subjects assumed several static arm postures, which varied in upper-arm (shoulder flexed, shoulder abducted, arm hanging to side) and forearm orientation (pronated, neutral, supinated). Transcranial magnetic stimulation over the contralateral motor cortex elicited MEPs in resting biceps and triceps brachii, and electrical stimulation of corticospinal tract axons at the cervicomedullary junction elicited cervicomedullary motor evoked potentials (CMEPs). MEPs and CMEPs were normalized to the maximal compound muscle action potential (Mmax). Responses in biceps were influenced by upper-arm and forearm orientation. For upper-arm orientation, biceps CMEPs were 68% smaller (P= 0.001), and biceps MEPs 31% smaller (P= 0.012), with the arm hanging to the side compared with when the shoulder was flexed. For forearm orientation, both biceps CMEPs and MEPs were 34% smaller (bothP< 0.046) in pronation compared with supination. Responses in triceps were influenced by upper-arm, but not forearm, orientation. Triceps CMEPs were 46% smaller (P= 0.007) with the arm hanging to the side compared with when the shoulder was flexed. Triceps MEPs and biceps and triceps MEP/CMEP ratios were unaffected by arm posture. The novel finding is that arm posture-dependent changes in corticospinal excitability in humans are largely spinal in origin. An interplay of multiple reflex inputs to motoneurons likely explains the results.

Neural Contributions to Muscle Fatigue: From the Brain to the Muscle and Back Again.

Taylor JL, Amann M, Duchateau J, Meeusen R, Rice CL

Unexpected factors affecting the excitability of human motoneurones in voluntary and stimulated contractions.

Khan SI, Taylor JL, Gandevia SC