Our response to COVID-19

We're supporting people to maintain their wellbeing and manage isolation.

Associate Professor Sylvia Gustin

TEAM LEADER PROFILE

Associate Professor, NeuRA & UNSW Director, Centre for Pain IMPACT, NeuRA
Rebecca L. Cooper Medical Research Fellow, NeuRA & UNSW
Registered Psychologist, AHPRA


Associate Professor Gustin is the Rebecca L. Cooper Fellow, senior neuroscientist and psychologist at NeuRA & UNSW. She is Director of the Centre for Pain IMPACT at NeuRA. Further, she is Head of the Pain Imaging Laboratory at NeuRA and UNSW. She also leads the Pain Research, Education and Management (PREM) program at NeuRA and NSW. 

Associate Professor Gustin completed her PhD in Psychology at the University of Tuebingen, Germany in 2006 and immigrated to Australia in 2007 to take up a postdoc position at the University of Sydney. In 2009 Associate Professor Gustin was awarded a Career Development Fellowship by the NSW Office for Science and Medical Research. In 2015 Associate Professor Gustin moved her laboratory to NeuRA and UNSW. Her research is funded by the Australian National Health and Medical Research Council (NHMRC), the Rebecca L. Cooper Medical Research Foundation, the International Association for the Study of Pain (IASP), the US Department of Defence, the NSW Defence Innovation Network and the NSW Office for Science and Medical Research (OSMR).

For the past 20 years (13 years postdoc, self-funded) Associate Professor Gustin has been using brain imaging techniques and psychological assessment to investigate the central and psychological circuits underlying chronic pain in humans. She has experience in the use of many brain imaging techniques such as magnetoencephalography and functional, structural and biochemical magnetic resonance imaging. In addition, Associate Professor Gustin has practised as a psychologist focusing on the management of chronic pain. Her aim is to increase our understanding of the development and maintenance of chronic pain, in particular psychological and central components and their association with each other. And most importantly to develop and evaluate novel interventions that can provide pain relief via the primary source of pain: the brain.

Projects Associate Professor Sylvia Gustin is currently involved with

CURRENT PROJECTS

What is the analgesic effect of EEG neurofeedback for people with chronic pain? A systematic review

Researchers: A/Prof Sylvia Gustin, Dr Negin Hesam-Shariati, Dr Wei-Ju Chang, A/Prof James McAuley, Dr Andrew Booth, A/Prof Toby Newton-John, Prof Chin-Teng Lin, A/Prof Zina Trost

Chronic pain is a global health problem, affecting around one in five individuals in the general population. The understanding of the key role of functional brain alterations in the generation of chronic pain has led researchers to focus on pain treatments that target brain activity. Electroencephalographic (EEG) neurofeedback attempts to modulate the power of maladaptive EEG frequency powers to decrease chronic pain. Although several studies provide promising evidence, the effect of EEG neurofeedback on chronic pain is uncertain. This systematic review aims to synthesise the evidence from randomised controlled trials (RCTs) to evaluate the analgesic effect of EEG neurofeedback.

The search strategy will be performed on five electronic databases (Cochrane Central, MEDLINE, Embase, PsycInfo, and CINAHL) for published studies and on clinical trial registries for completed unpublished studies. We will include studies that used EEG neurofeedback as an intervention for people with chronic pain. Risk of bias tools will be used to assess methodological quality of the included studies. RCTs will be included if they have compared EEG neurofeedback with any other intervention or placebo control. The data from RCTs will be aggregated to perform a meta-analysis for quantitative synthesis. In addition, non-randomised studies will be included for a narrative synthesis. The data from non-randomised studies will be extracted and summarised in a descriptive table. The primary outcome measure is pain intensity assessed by self-report scales. Secondary outcome measures include depressive symptoms, anxiety symptoms, and sleep quality measured by self-reported questionnaires. Further, we will investigate the non-randomised studies for additional outcomes addressing safety, feasibility, and resting-state EEG analysis.

READ MORE

What is the analgesic effect of EEG neurofeedback for people with chronic pain? A systematic review

The RESTORE Trial: Immersive Virtual Reality Treatment for Restoring Touch Perception in People with

Chief Investigators: Associate Professor Sylvia Gustin, Prof James Middleton, A/Prof Zina Trost, Prof Ashley Craig, Prof Jim Elliott, Dr Negin Hesam-Shariati, Corey Shum and James Stanley

While recognition of surviving pathways in complete injuries has tremendous implications for SCI rehabilitation, currently no effective treatments exist to promote or restore touch perception among those with discomplete SCI. The proposed study will address this need by developing and testing a novel intervention that can provide touch restoration via the primary source of sensory perception: the brain.Complete spinal cord injury (SCI) is associated with a complete loss of function such as mobility or sensation. In a recent discovery we revealed that 50% of people with complete SCI still have surviving somatosensory nerve fibres at the level of the spine. For those with complete SCI this is hopeful news as it means — contrary to previous belief that communication to the brain had been severed by injury — that the brain is still receiving messages. This new SCI type is labelled “discomplete SCI” — a SCI person who cannot feel touch, but touch information is still forwarded from the foot to the brain.

The project will use virtual reality (VR) in a way it has never been used before. We will develop the first immersive VR interface that simultaneously enhances surviving spinal somatosensory nerve fibres and touch signals in the brain in an effort to restore touch perception in people with discomplete SCI. In other words, immersive VR is being used to re-train the brain to identify the distorted signals from toe to head as sensation (touch). For example, participants will receive touch simulation in the real world (e.g., their toe) while at the same time receiving corresponding multisensory touch stimuli in the virtual world (e.g., experiencing walking up to kick a ball).

This project is the first effort worldwide to restore touch sensation in 50% of individuals with complete injuries. The outcomes to be achieved from the current study will represent a cultural and scientific paradigmatic shift in terms of what can be expected from life with a spinal cord injury. In addition, the project allows potential identification of brain mechanisms that may ultimately represent direct targets for acute discomplete SCI rehabilitation, including efforts to preserve rather than restore touch perception following SCI.

RESTORE consolidates the expertise of scientists, clinicians, VR developers and stakeholders from NeuRA and UNSW School of Psychology (A/Prof Sylvia Gustin, Dr Negin Hesam-Shariati), John Walsh Centre for Rehabilitation Research, Kolling Institute and University of Sydney (Prof James Middleton, Prof Ashley Craig and Prof Jim Elliott), Virginia Commonwealth University (A/Prof Zina Trost), Immersive Experience Laboratories LLC (Director Corey Shum) and James Stanley.

If you are interested in being contacted about the RESTORE trial, please email A/Prof Sylvia Gustin (s.gustin@unsw.edu.au) and include your name, phone number, address, type of SCI (e.g., complete or incomplete), level of injury (e.g., T12) and duration of SCI (e.g., 5 years).

READ MORE

The RESTORE Trial: Immersive Virtual Reality Treatment for Restoring Touch Perception in People with Discomplete Paraplegia

Medicines for Back Pain

Medicines are the most common treatment for back pain. The aim of this program of research is to improve our understanding of the clinical effects of medicines.

Studies currently in progress:

  1. Scoping review of paracetamol, NSAIDs and opioid analgesics for chronic low back pain (led by Matthew K Bagg). The objective of this study is to identify and describe the characteristics of available clinical trials of commonly used analgesic medicines for chronic low back pain. This information will inform the design and conduct of other studies in the research program.
  2. Paracetamol, NSAIDs and opioid analgesics for chronic low back pain: a network meta-analysis (led by Matthew K Bagg). The objective of this study is to produce information about the clinical effects of available analgesic medicines for chronic low back pain. This information will be available in a Cochrane review to assist clinical prescription of medicines. The protocol is published and available here.
  3. Prescribing practices of medicines for adults with low back pain: a systematic review (led by Michael Wewege). The objective of this study is to determine how different medicines are prescribed to adults with low back pain and how this differs across countries. The protocol for this study is being developed.
  4. Analgesic medicines for adults with low back pain: a network meta-analysis (led by Michael Wewege). The objective of this study is to evaluate the comparative effectiveness of a range of analgesic medicines for adults across different classifications of low back pain. The protocol for this study has been submitted for publication.
  5. Muscle relaxant medicines for low back pain: a systematic review and meta-analysis (led by Aidan Cashin and Thiago Folly). The objective of this study is to determine the effectiveness and tolerability of muscle relaxant medicines for adults with low back pain. The protocol is available here.
  6. Novel biologic medicines for low back pain: a systematic review and meta-analysis (led by Rodrigo Rizzo). The objective of this study is to determine the effectiveness and tolerability of novel biologic medicines for adults with low back pain. The protocol is available here.

Completed studies:

  1. Evaluation of the impact of unpublished data from clinical trial registries on the effects of medicines for low back pain (led by Matthew Bagg). The objective of this study was to evaluate whether there is a difference between clinical trial data that are published and those that are not published. The findings are published in the Journal of Clinical Epidemiology.
  2. Antidepressant medicines for low back pain: a systematic review and meta-analysis (led by Michael Ferraro). The objective of this study was to determine the effectiveness and tolerability of antidepressant medicines for adults with low back pain. The findings have been submitted for publication. The protocol is available here.

Medicines for Back Pain – Publications:

  • Bagg MK, McLachlan AJ, Maher CG, Kamper SJ, Williams CM, Henschke N, Wand BM, Moseley GL, Hübscher M, O’Connell NE, van Tulder MW, Nikolakopoulou A, McAuley JH. (2018). Paracetamol, NSAIDS and opioid analgesics for chronic low back pain: a network meta-analysis [Protocol]. Cochrane Database of Systematic Reviews, Issue 6. doi: 10.1002/14651858.CD013045. PMCID: PMC6513465
  • Bagg MK, O’Hagan E, Zahara P, Wand BM, Hübscher M, Moseley GL, McAuley JH. (2020). Reviews may overestimate the effectiveness of medicines for back pain: systematic review and meta-analysis. Journal of Clinical Epidemiology. doi: 10.1016/ j.jclinepi.2019.12.006. PMID: 31816418

Medicines for Back Pain – Registrations of Study Protocols:

  • Folly T, Bagg MK, Wewege M, Ferraro MC, Schabrun S, Gustin SM, Day R, McAuley JH. (2019) UMbRELLA: Understanding efficacy and safety of Muscle RELaxant medicines for Low back pain – systematic Literature review and meta-Analysis (protocol).Open Science Framework, available at: https://osf.io/xuw5h
  • Rizzo RN, Bagg MK, Ferraro MC, Wewege M, Cashin A, Leake HB, O’Hagan E, Jones M, McAuley JH. (2020). Efficacy and safety of medicines targeting neurotrophic factors in the management of low back pain: protocol for a systematic review and meta-analysis. Open Science Framework, available at: https://osf.io/zax6d
  • Ferraro MC, Bagg MK, McAuley JH. (2019). RADICAL: Systematic Review of Anti-Depressant Medicines if Considered Analgesics for Low Back Pain (protocol). Open Science Framework, available at: https://osf.io/cedm3

READ MORE

Medicines for Back Pain

The No Worries Trial

Researchers: Associate Professor Sylvia Gustin, Nell-Norman-Nott, Dr Negin Hesam- Shariati, Dr. Chelsey Wilks (University of Washington).

Emerging evidence has shown that negative emotional states play a key role in the development and maintenance of chronic pain. The No Worries Trial will evaluate the effectiveness of a four-week internet-delivered Dialectical Behaviour Therapy (DBT) skills training to help chronic pain sufferers cope with painful, fearful, worrisome, anxious, and negative thoughts and emotions. Moreover, by having the DBT skills training online it is more accessible to those in remote communities, to those with restricted mobility, and more broadly it adds to the knowledge of internet-delivered therapies at a time when online is increasingly necessary to deliver treatment due to COVID-19.

READ MORE

The No Worries Trial

MEMOIR – a clinical trial for Complex Regional Pain Syndrome

Complex Regional Pain Syndrome (CRPS) is a serious health condition, affecting approximately 20,000 people in Australia. It is characterised by severe burning, stinging and stabbing pain. People with CRPS are unable to use their painful limb and their ability to work or participate in normal social activities is severely restricted. Currently, there are no effective treatments for CRPS.

A vast body of research has demonstrated changes in brain processes in CRPS. The MEMOIR trial will investigate the effectiveness of two novel brain-directed treatments to reduce pain and improve function in people with CRPS.

MEMOIR consolidates the expertise of scientists and clinicians from NeuRA (A/Prof James McAuley, A/Prof Sylvia Gustin, Mr Michael Ferraro), the University of South Australia (Prof Lorimer Moseley), the University of Sydney (Prof Andrew McLachlan), the University of Notre Dame Australia Fremantle (Prof Benedict Wand, Prof Eric Visser), the University of Exeter (Prof Sallie Lamb), Brunel University London (Dr Neil O’Connell) and the University of Oxford (Dr Hopin Lee).

Due to the COVID-19 global pandemic, the commencement of MEMOIR has been delayed. Recruitment for MEMOIR will commence in September 2020.

If you are interested in being contacted about our CRPS research, please leave your details below and we will be in touch once recruitment begins. 

Fields marked with an * are required

READ MORE

MEMOIR – a clinical trial for Complex Regional Pain Syndrome

Spinal Cord Injury Breakthrough

Associate Professor Sylvia Gustin, Associate Professor Paul Wrigley and Professor Philip Siddall.

Researchers from NeuRA, the University of New South Wales
the University of Sydney,
and HammondCare have found surviving sensory spinal nerve connections in 50 per cent of people living with complete thoracic spinal cord injuries.

The study, which is part of
a decade-long collaboration between the researchers, used cutting-edge functional MRI (fMRI) technology to record neural response to touch. It was  Dr Sylvia Gustin who analysed the fMRI images to identify the moment the patient’s brain registered the touch.

“Seeing the brain light up to touch shows that despite the complete injury to the thoracic spine, somatosensory pathways have been preserved,” explains Dr Gustin.

“It’s fascinating that although the patients did not ‘feel’ the big toe stimulation in the experiment, we were able to detect a significant signal in response to the touch in the brain’s primary and secondary somatosensory cortices, the thalamus, and the cerebellum.”

For those living with a complete spinal cord injury this means, despite previously believing
the communication to the brain had been severed in the injury, messages are still being received. Dr Gustin describes this new category of spinal cord injury as ‘discomplete’

“The current classification system is flawed. It only contains two types of spinal cord injury – complete and incomplete,” says Dr Gustin.

“It is important we acknowledge there is a third category – the ‘discomplete’ injury, only then we can provide better treatment regimens for the many sufferers of a complete spinal cord injury.”

For those newly classified as ‘discomplete’, this discovery opens up new opportunities to identify those people living with a spinal cord injury that are more likely to benefit from treatments aimed at improving sensation and movement. Because of this study, research participant, James Stanley, now knows he belongs to a new category.

“It is exciting to know that there
is a connection there, that my toe is trying to say hello to my brain,” says James.

“If medical professionals can work to identify people like me with a ‘discomplete’ injury earlier, perhaps they can find new treatments and rehabilitation techniques.

“The thought that one day I might be able to feel the sand between my toes again, or the waves wash over my feet gives me hope. It’s something Dr Gustin’s discovery has made possible.”

 

READ MORE

Spinal Cord Injury Breakthrough

The Avatar Project – Virtual Reality Intervention

Associate Professor Sylvia Gustin, Assistant Professor Zina Trost, Corey Shum, Associate Professor Mark Bolding, Professor Philip Siddall, Professor Scott Richards, Dr Nancy Briggs, Professor Victor Mark

A person with spinal cord injury cannot feel touch. When touch information is forwarded from the periphery, e.g. the big toe, the brain represents a new category – discomplete spinal cord injury – which requires a new approach to rehabilitation. A new phase of this research program will study how to enhance these surviving sensory spinal nerve pathways with an intensive stimulation of the areas which represent touch in the brain to ultimately restore a perception of touch.

Together with Corey Shum and Associate Professor Zina Trost (University of Alabama, USA), Dr Gustin is developing a novel approach of Virtual Reality Walking Intervention (VRWalk) to enhance both the surviving sensory spinal nerve pathways and the touch signal in the brain in people with a discomplete spinal cord injury to finally restore the perception of touch.

The VRWalk intervention is facilitated by a commercially- available head-mounted display and wearable wrist sensors equipped with lightweight accelerometers. These detect participant arm movement during gait motion, translating arm swings into synchronised leg movement in the virtual world.

Participants’ arms and legs are represented from a first-person perspective in a fully immersive 360-degree virtual scene. System mechanisms function to optimally map participants’ actions to those of the virtual avatar, ensuring that virtual motion is directly related to participant intent (and moderating vestibular discomfort). The system dynamically adjusts sound and haptic feedback from virtual “footfalls”, accounting for scene characteristics.

Gaming elements are central to the VRWalk design both to facilitate goal-directed activity through interaction with VR
world objectives and to engage active interest. Optimal kinematic configuration in the virtual environment and relationship between physical and virtual body were addressed as part of initial testing by spinal cord injury stakeholders.

“Our primary aim is to examine whether a 20-day course of 30-minute VRWalk intervention offers clinically meaningful restoration of touch perception in people with discomplete spinal cord injury,” says Dr Gustin.

The research team will also use neuroimaging data, focusing specifically on changes in brain areas which represent touch and movement.

As a result of these developments, the research will provide the evidence base to develop new policies for diagnostic classification of spinal cord injuries, e.g. including discomplete injuries, not only in Australia but globally. This would be a game changer and provide a new future for close to 50 per cent of all people currently living with a complete spinal cord injury.

READ MORE

The Avatar Project – Virtual Reality Intervention

The STOPain Study: Using brain-computer-interface intervention for people with neuropathic pain

Chronic pain is a significant problem worldwide affecting nearly 8 million Australians. Unfortunately, despite the availability of analgesics and other pain therapies, no treatment has been found that benefits the majority of individuals, and most of the available treatments have significant side effects or risks for serious adverse events, e.g. kidney failure.

READ MORE

The STOPain Study: Using brain-computer-interface intervention for people with neuropathic pain

Unravelling the link between chronic pain and mental health disorders

Chronic pain is a significant problem worldwide that results in enormous suffering and costs to affected individuals, their loved ones, and society. The experience of chronic pain is so much more than a sensation. Chronic pain impacts our emotions, cognition and social life.

READ MORE

Unravelling the link between chronic pain and mental health disorders

A Multi-Site Randomized Clinical Trial to Examine the Efficacy and Mechanisms of Immersive Virtual W

Chronic neuropathic pain (NP) can be a debilitating secondary condition for persons with spinal cord injury (SCI) and effective pharmacological and non-pharmacological treatments remain elusive. This project brings together international experts in basic science and clinical approaches to SCI NP for a rigorous multisite randomized clinical trial to examine the efficacy and mechanisms of an advanced interactive virtual reality (VR) walking intervention (VRWalk).

READ MORE

A Multi-Site Randomized Clinical Trial to Examine the Efficacy and Mechanisms of Immersive Virtual Walking Treatment for Neuropathic Pain in Spinal Cord Injury

RESOLVE Trial for Chronic Low Back Pain

For people with long term back pain that is not getting better. We are testing two pain treatment programs that target the brain, for people with chronic low back pain.

READ MORE

RESOLVE Trial for Chronic Low Back Pain

Patient Education to PREVENT Chronic Low Back Pain

For people with a new low back pain episode. We are testing early intervention to reduce the risk of developing chronic low back pain.

READ MORE

Patient Education to PREVENT Chronic Low Back Pain

SLEEPain

For people with back pain who are having trouble with their sleep. We are testing whether a simple sleep tablet will help people reduce their pain and sleep better.

READ MORE

SLEEPain

CHRONIC PAIN AND THE BRAIN (ABC NEWS)

CHANNEL 7 NEWS – AVATAR PROJECT

THE AVATAR PROJECT – NEURA

ABC NEWS BREAKFAST SPINAL CORD BREAKTHROUGH

LINKED IN PROFILE

ABC 7PM NEWS SPINAL CORD BREAKTHROUGH

AUSSIE DISCOVERY GIVES HOPE FOR PARAPLEGICS

FULL INTERVIEW: MAJOR BREAKTHROUGH IN SPINAL CORD RESEARCH

UNRECOGNIZED NERVE SURVIVAL AFTER SPINAL INJURY COULD IMPROVE RECOVERY PROSPECTS

INTERVIEW WITH DR SYLVIA GUSTIN

NERVE DISCOVERY OFFERS HOPE TO PATIENTS SUFFERING MAJOR SPINAL CORD INJURIES

HALF OF SPINAL CORD INJURY PATIENTS MAY STILL HAVE SOME CONNECTIVITY, AUSTRALIAN STUDY FINDS

ABC CYBERHATE: THE POWER OF WORDS

ABC ASK THE DOCTOR: PAIN

ABC CATALYST: WHEN PAIN PERSISTS

ABC RADIO NATIONAL: PAIN ON THE BRAIN

A/PROF SYLVIA GUSTIN ON ABC NEWS

A/PROF SYLVIA GUSTIN ON ABC NEWS

RESEARCH TEAM

NELL NORMAN-NOTT Honours Student Psychology

BROOKE NAYLOR Masters Student, Clinical Psychology

DANIEL HULTBERG Medical Student

ANTON PAULSON Medical Student

DAVID KANG Medical Student

PUBLICATIONS

What does the grey matter decrease in the medial prefrontal cortex reflect in people with chronic pain?

Kang D, McAuley JH, Kassem MS, Gatt JM, Gustin SM

Alterations in the grey matter volume of several brain regions have been reported in people with chronic pain. The most consistent observation is a decrease in grey matter volume in the medial prefrontal cortex. These findings are important as the medial prefrontal cortex plays a critical role in emotional and cognitive processing in chronic pain. Although a logical cause of grey matter volume decrease may be neurodegeneration, this is not supported by the current evidence. Therefore, the purpose of this review was to evaluate the existing literature to unravel what the decrease in medial prefrontal cortex grey matter volume in people with chronic pain may represent on a biochemical and cellular level. Our model proposes new mechanisms in chronic pain pathophysiology responsible for mPFC grey matter loss as alternatives to neurodegeneration.