Associate Professor, NeuRA & UNSW
Director, Centre for Pain IMPACT, NeuRA
Rebecca L. Cooper Medical Research Fellow, NeuRA & UNSW
Registered Psychologist, AHPRA
Associate Professor Gustin is the Rebecca L. Cooper Fellow, senior neuroscientist and psychologist at NeuRA & UNSW. She is Director of the Centre for Pain IMPACT at NeuRA. Further, she is Head of the Pain Imaging Laboratory at NeuRA and UNSW. She also leads the Pain Research, Education and Management (PREM) program at NeuRA and NSW.
Associate Professor Gustin completed her PhD in Psychology at the University of Tuebingen, Germany in 2006 and immigrated to Australia in 2007 to take up a postdoc position at the University of Sydney. In 2009 Associate Professor Gustin was awarded a Career Development Fellowship by the NSW Office for Science and Medical Research. In 2015 Associate Professor Gustin moved her laboratory to NeuRA and UNSW. Her research is funded by the Australian National Health and Medical Research Council (NHMRC), the Rebecca L. Cooper Medical Research Foundation, the International Association for the Study of Pain (IASP), the US Department of Defence, the NSW Defence Innovation Network and the NSW Office for Science and Medical Research (OSMR).
For the past 20 years (13 years postdoc, self-funded) Associate Professor Gustin has been using brain imaging techniques and psychological assessment to investigate the central and psychological circuits underlying chronic pain in humans. She has experience in the use of many brain imaging techniques such as magnetoencephalography and functional, structural and biochemical magnetic resonance imaging. In addition, Associate Professor Gustin has practised as a psychologist focusing on the management of chronic pain. Her aim is to increase our understanding of the development and maintenance of chronic pain, in particular psychological and central components and their association with each other. And most importantly to develop and evaluate novel interventions that can provide pain relief via the primary source of pain: the brain.
Researchers: A/Prof Sylvia Gustin, Dr Negin Hesam-Shariati, Dr Wei-Ju Chang, A/Prof James McAuley, Dr Andrew Booth, A/Prof Toby Newton-John, Prof Chin-Teng Lin, A/Prof Zina Trost
Chronic pain is a global health problem, affecting around one in five individuals in the general population. The understanding of the key role of functional brain alterations in the generation of chronic pain has led researchers to focus on pain treatments that target brain activity. Electroencephalographic (EEG) neurofeedback attempts to modulate the power of maladaptive EEG frequency powers to decrease chronic pain. Although several studies provide promising evidence, the effect of EEG neurofeedback on chronic pain is uncertain. This systematic review aims to synthesise the evidence from randomised controlled trials (RCTs) to evaluate the analgesic effect of EEG neurofeedback.
The search strategy will be performed on five electronic databases (Cochrane Central, MEDLINE, Embase, PsycInfo, and CINAHL) for published studies and on clinical trial registries for completed unpublished studies. We will include studies that used EEG neurofeedback as an intervention for people with chronic pain. Risk of bias tools will be used to assess methodological quality of the included studies. RCTs will be included if they have compared EEG neurofeedback with any other intervention or placebo control. The data from RCTs will be aggregated to perform a meta-analysis for quantitative synthesis. In addition, non-randomised studies will be included for a narrative synthesis. The data from non-randomised studies will be extracted and summarised in a descriptive table. The primary outcome measure is pain intensity assessed by self-report scales. Secondary outcome measures include depressive symptoms, anxiety symptoms, and sleep quality measured by self-reported questionnaires. Further, we will investigate the non-randomised studies for additional outcomes addressing safety, feasibility, and resting-state EEG analysis.
Chief Investigators: Associate Professor Sylvia Gustin, Prof James Middleton, A/Prof Zina Trost, Prof Ashley Craig, Prof Jim Elliott, Dr Negin Hesam-Shariati, Corey Shum and James Stanley
While recognition of surviving pathways in complete injuries has tremendous implications for SCI rehabilitation, currently no effective treatments exist to promote or restore touch perception among those with discomplete SCI. The proposed study will address this need by developing and testing a novel intervention that can provide touch restoration via the primary source of sensory perception: the brain.Complete spinal cord injury (SCI) is associated with a complete loss of function such as mobility or sensation. In a recent discovery we revealed that 50% of people with complete SCI still have surviving somatosensory nerve fibres at the level of the spine. For those with complete SCI this is hopeful news as it means — contrary to previous belief that communication to the brain had been severed by injury — that the brain is still receiving messages. This new SCI type is labelled “discomplete SCI” — a SCI person who cannot feel touch, but touch information is still forwarded from the foot to the brain.
The project will use virtual reality (VR) in a way it has never been used before. We will develop the first immersive VR interface that simultaneously enhances surviving spinal somatosensory nerve fibres and touch signals in the brain in an effort to restore touch perception in people with discomplete SCI. In other words, immersive VR is being used to re-train the brain to identify the distorted signals from toe to head as sensation (touch). For example, participants will receive touch simulation in the real world (e.g., their toe) while at the same time receiving corresponding multisensory touch stimuli in the virtual world (e.g., experiencing walking up to kick a ball).
This project is the first effort worldwide to restore touch sensation in 50% of individuals with complete injuries. The outcomes to be achieved from the current study will represent a cultural and scientific paradigmatic shift in terms of what can be expected from life with a spinal cord injury. In addition, the project allows potential identification of brain mechanisms that may ultimately represent direct targets for acute discomplete SCI rehabilitation, including efforts to preserve rather than restore touch perception following SCI.
RESTORE consolidates the expertise of scientists, clinicians, VR developers and stakeholders from NeuRA and UNSW School of Psychology (A/Prof Sylvia Gustin, Dr Negin Hesam-Shariati), John Walsh Centre for Rehabilitation Research, Kolling Institute and University of Sydney (Prof James Middleton, Prof Ashley Craig and Prof Jim Elliott), Virginia Commonwealth University (A/Prof Zina Trost), Immersive Experience Laboratories LLC (Director Corey Shum) and James Stanley.
If you are interested in being contacted about the RESTORE trial, please email A/Prof Sylvia Gustin (s.gustin@unsw.edu.au) and include your name, phone number, address, type of SCI (e.g., complete or incomplete), level of injury (e.g., T12) and duration of SCI (e.g., 5 years).
Medicines are the most common treatment for back pain. The aim of this program of research is to improve our understanding of the clinical effects of medicines.
Studies currently in progress:
Completed studies:
Medicines for Back Pain – Publications:
Medicines for Back Pain – Registrations of Study Protocols:
Researchers: Associate Professor Sylvia Gustin, Nell-Norman-Nott, Dr Negin Hesam- Shariati, Dr. Chelsey Wilks (University of Washington).
Emerging evidence has shown that negative emotional states play a key role in the development and maintenance of chronic pain. The No Worries Trial will evaluate the effectiveness of a four-week internet-delivered Dialectical Behaviour Therapy (DBT) skills training to help chronic pain sufferers cope with painful, fearful, worrisome, anxious, and negative thoughts and emotions. Moreover, by having the DBT skills training online it is more accessible to those in remote communities, to those with restricted mobility, and more broadly it adds to the knowledge of internet-delivered therapies at a time when online is increasingly necessary to deliver treatment due to COVID-19.
To learn more about MEMOIR please visit our new website memoir.neura.edu.au
Associate Professor Sylvia Gustin, Associate Professor Paul Wrigley and Professor Philip Siddall.
Researchers from NeuRA, the University of New South Wales the University of Sydney, and HammondCare have found surviving sensory spinal nerve connections in 50 per cent of people living with complete thoracic spinal cord injuries.
The study, which is part of a decade-long collaboration between the researchers, used cutting-edge functional MRI (fMRI) technology to record neural response to touch. It was Dr Sylvia Gustin who analysed the fMRI images to identify the moment the patient’s brain registered the touch.
“Seeing the brain light up to touch shows that despite the complete injury to the thoracic spine, somatosensory pathways have been preserved,” explains Dr Gustin.
“It’s fascinating that although the patients did not ‘feel’ the big toe stimulation in the experiment, we were able to detect a significant signal in response to the touch in the brain’s primary and secondary somatosensory cortices, the thalamus, and the cerebellum.”
For those living with a complete spinal cord injury this means, despite previously believing the communication to the brain had been severed in the injury, messages are still being received. Dr Gustin describes this new category of spinal cord injury as ‘discomplete’
“The current classification system is flawed. It only contains two types of spinal cord injury – complete and incomplete,” says Dr Gustin.
“It is important we acknowledge there is a third category – the ‘discomplete’ injury, only then we can provide better treatment regimens for the many sufferers of a complete spinal cord injury.”
For those newly classified as ‘discomplete’, this discovery opens up new opportunities to identify those people living with a spinal cord injury that are more likely to benefit from treatments aimed at improving sensation and movement. Because of this study, research participant, James Stanley, now knows he belongs to a new category.
“It is exciting to know that there is a connection there, that my toe is trying to say hello to my brain,” says James.
“If medical professionals can work to identify people like me with a ‘discomplete’ injury earlier, perhaps they can find new treatments and rehabilitation techniques.
“The thought that one day I might be able to feel the sand between my toes again, or the waves wash over my feet gives me hope. It’s something Dr Gustin’s discovery has made possible.”
Associate Professor Sylvia Gustin, Assistant Professor Zina Trost, Corey Shum, Associate Professor Mark Bolding, Professor Philip Siddall, Professor Scott Richards, Dr Nancy Briggs, Professor Victor Mark
A person with spinal cord injury cannot feel touch. When touch information is forwarded from the periphery, e.g. the big toe, the brain represents a new category – discomplete spinal cord injury – which requires a new approach to rehabilitation. A new phase of this research program will study how to enhance these surviving sensory spinal nerve pathways with an intensive stimulation of the areas which represent touch in the brain to ultimately restore a perception of touch.
Together with Corey Shum and Associate Professor Zina Trost (University of Alabama, USA), Dr Gustin is developing a novel approach of Virtual Reality Walking Intervention (VRWalk) to enhance both the surviving sensory spinal nerve pathways and the touch signal in the brain in people with a discomplete spinal cord injury to finally restore the perception of touch.
The VRWalk intervention is facilitated by a commercially- available head-mounted display and wearable wrist sensors equipped with lightweight accelerometers. These detect participant arm movement during gait motion, translating arm swings into synchronised leg movement in the virtual world.
Participants’ arms and legs are represented from a first-person perspective in a fully immersive 360-degree virtual scene. System mechanisms function to optimally map participants’ actions to those of the virtual avatar, ensuring that virtual motion is directly related to participant intent (and moderating vestibular discomfort). The system dynamically adjusts sound and haptic feedback from virtual “footfalls”, accounting for scene characteristics.
Gaming elements are central to the VRWalk design both to facilitate goal-directed activity through interaction with VR
world objectives and to engage active interest. Optimal kinematic configuration in the virtual environment and relationship between physical and virtual body were addressed as part of initial testing by spinal cord injury stakeholders.
“Our primary aim is to examine whether a 20-day course of 30-minute VRWalk intervention offers clinically meaningful restoration of touch perception in people with discomplete spinal cord injury,” says Dr Gustin.
The research team will also use neuroimaging data, focusing specifically on changes in brain areas which represent touch and movement.
As a result of these developments, the research will provide the evidence base to develop new policies for diagnostic classification of spinal cord injuries, e.g. including discomplete injuries, not only in Australia but globally. This would be a game changer and provide a new future for close to 50 per cent of all people currently living with a complete spinal cord injury.
THIAGO FOLLY Research Assistant
NELL NORMAN-NOTT PhD Student
BROOKE NAYLOR Masters Student, Clinical Psychology
DANIEL HULTBERG Medical Student
ANTON PAULSON Medical Student
DAVID KANG Medical Student
PAULINE ZAHARA Clinical Trial Manager
Alterations in the grey matter volume of several brain regions have been reported in people with chronic pain. The most consistent observation is a decrease in grey matter volume in the medial prefrontal cortex. These findings are important as the medial prefrontal cortex plays a critical role in emotional and cognitive processing in chronic pain. Although a logical cause of grey matter volume decrease may be neurodegeneration, this is not supported by the current evidence. Therefore, the purpose of this review was to evaluate the existing literature to unravel what the decrease in medial prefrontal cortex grey matter volume in people with chronic pain may represent on a biochemical and cellular level. Our model proposes new mechanisms in chronic pain pathophysiology responsible for mPFC grey matter loss as alternatives to neurodegeneration.