Dr Claire Shepherd


Senior Research Facility Manager Conjoint Lecturer in Pathology, UNSW

+612 9399 1690

Dr Claire Shepherd trained in neuroscience and completed her PhD in Alzheimer’s disease at the University of Sheffield, UK. After completing her PhD she relocated to Sydney to pursue her interest in the role of inflammation in the neurodegenerative process. Soon after her move, Claire was awarded the prestigious Rolf Edgar Lake Fellowship from the University of Sydney and subsequently directed a National Health and Medical Research Council (NHMRC) project grant as CIA. In 2000 Claire was awarded the inaugural Franz Nissl Young Investigator Prize in Neuroscience in recognition of achievements in her early post-doctoral years. Since that time, she has attracted over $1.6million in research funds and now manages the Sydney Brain Bank, which is a new research facility that collects, characterises and stores brain tissue for research into neurodegenerative disease. Claire is currently co-CI on an NHMRC project grant and continues to supervise undergraduate and postgraduate students within Professor Halliday’s laboratory.



C9ORF72 repeat expansion in clinical and neuropathologic frontotemporal dementia cohorts.

Dobson-Stone C, Hallupp M, Bartley L, Shepherd CE, Halliday GM, Schofield PR, Hodges JR, Kwok JB

To determine the frequency of a hexanucleotide repeat expansion in C9ORF72, a gene of unknown function implicated in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), in Australian FTD patient cohorts and to examine the clinical and neuropathologic phenotypes associated with this expansion. The C9ORF72 repeat expansion is a relatively common cause of FTD in Australian populations, and is especially common in those with FTD-ALS, psychotic features, and a strong family history. Detection of a repeat expansion on the 9p21 putative "nonrisk" haplotype suggests that not all mutation carriers are necessarily descended from a common founder and indicates that the expansion may have occurred on multiple haplotype backgrounds.

Classification of FTLD-TDP cases into pathological subtypes using antibodies against phosphorylated and non-phosphorylated TDP43.

Tan RH, Shepherd CE, Kril JJ, McCann H, McGeachie A, McGinley C, Affleck A, Halliday GM

This study demonstrates a higher consistency across independent observers in the pathological subtyping of FTLD-TDP cases with the use of a pTDP43 antibody in comparison to the iTDP43 antibody, and corroborates the use of pTDP43 for pathological classification of FTLD-TDP cases.

Aneuploidy in Lewy body diseases.

Yang Y, Shepherd C, Halliday G

An increase in DNA content is associated with neuronal degeneration in Alzheimer's disease but has not been evaluated in Lewy body diseases. Using stereological principles, flow cytometry, and standard histopathologic methods, we evaluated the number and DNA content of neurons and all cells and the severity of Lewy and Alzheimer pathologies, in brain regions affected at different stages in Lewy body diseases compared with controls. An increase in neuronal DNA content was observed in all the affected brain regions examined, although this change was related to different pathologies. In the substantia nigra, increased neuronal DNA content related to neuronal loss, whereas in the cortex and hippocampus, increased neuronal DNA content related to Alzheimer pathologies. Of note, increased neuronal DNA content did not relate to the deposition of Lewy bodies in any region examined. These data support the concept that increased DNA content increases neuronal susceptibility to degeneration and Alzheimer pathologies.

View all publications