Dr Euan McCaughey

TEAM LEADER PROFILE

Research Fellow Early Career Research Fellow, NHMRC
Conjoint Lecturer in School of Medical Sciences, University of New South Wales

(02) 9399 1827


Dr Euan McCaughey is a biomedical engineer. His research interests lie in the way that medical devices can be used to improve the lives of those living with an illness or disability. He completed his PhD at the University of Glasgow in 2014, focusing on the use of Abdominal Functional Electrical Stimulation (Abdominal FES) to improve respiratory function after spinal cord injury. During this time he developed a number of novel stimulation protocols, performed the first study to investigate the use of Abdominal FES to assist ventilator weaning for patients with acute tetraplegia, and combined Abdominal FES with mechanical insufflation-exsufflation for this first time.

After spending two years conducting public health research at Macquarie University, he moved to NeuRA in 2017. During his current NHMRC Fellowship, Dr McCaughey is seeking to generate research evidence and technology that assists the clinical translation of Abdominal Functional Electrical Stimulation to improve respiratory function in a number of patient groups.

Euan is looking for Honours and PhD students for his current studies. Contact him for more details.

Projects Dr Euan McCaughey is currently involved with

CURRENT PROJECTS

Using Abdominal Functional Electrical Stimulation to improve bowel function in Multiple Sclerosis

There are currently over 20,000 people living with Multiple Sclerosis (MS) in Australia. Bowel and bladder problems, mainly in the form of constipation and urinary incontinence, affect more than half of these people. These problems have traditionally been managed using a combination of manual and pharmacological interventions. However, such solutions are usually only partially effective. Therefore, a non-invasive method of improving bowel and bladder function for people with MS is urgently needed.

The abdominal muscles play a major role during defecation and urination. Surface electrical stimulation of the abdominal muscles, termed Abdominal Functional Electrical Stimulation (Abdominal FES), has been shown to improve bowel function after spinal cord injury, with a case study suggesting this technique may also improve bowel function in MS. There is also limited evidence that Abdominal FES can improve bladder control.

We are currently undertaking the first significant study to investigate the effectiveness of Abdominal FES to improve the bowel and bladder function of people with MS. By making use of the most advanced motility testing system currently available, we hope to be able to definitively assess whether Abdominal FES could be a useful treatment solution for people with MS.

READ MORE

Using Abdominal Functional Electrical Stimulation to improve bowel function in Multiple Sclerosis

Reducing mechanical ventilation duration for the critically ill: a pilot study

Approximately 33% of critically ill patients require mechanical ventilation to support respiration. During this time the major respiratory muscles, namely the diaphragm, abdominal and intercostal muscles, weaken. This vicious cycle leads to difficulty in separating patients from mechanical ventilation, increased mortality, and more readmissions to intensive care. Interventions that maintain respiratory muscle strength and reduce atrophy during mechanical ventilation are likely to reduce ventilation duration, complications and costs, and improve quality of life.

The abdominal muscles are the primary muscle group used during forced exhalation. We have shown that surface Functional Electrical Stimulation (FES) of the abdominal muscles, termed Abdominal FES, can improve respiratory function and assist weaning from mechanical ventilation in spinal cord injury. We hypothesise that Abdominal FES in critically ill patients will reduce diaphragm and abdominal muscle atrophy, with the long term goal of this project to demonstrate reduced mechanical ventilation duration.

We are currently conducting a pilot study at the Prince of Wales Hospital, Sydney, to investigate whether Abdominal FES is a feasible technique for reducing mechanical ventilation duration in critical illness. This work is being supported by our American project partners, Liberate Medical.

READ MORE

Reducing mechanical ventilation duration for the critically ill: a pilot study

Abdominal Functional Electrical Stimulation to reduce respiratory complications after spinal cord in

While tetraplegia is often characterized by paralysis of all four limbs, paralysis also affects the major respiratory muscles, namely the diaphragm and abdominal and intercostal muscles. This reduces respiratory function, with associated respiratory complications, such as pneumonia and atelectasis. Such complications are a leading cause of illness and death for the tetraplegic population. Up to 68% of patients with tetraplegia have a respiratory complication in the first 6 weeks (i.e. the acute stage) of injury. A reduction in respiratory complications in acute tetraplegia would decrease illness and death, reduce rehabilitation time, improve quality of life, and result in a large cost saving for global health systems.

Surface electrical stimulation of the abdominal muscles, termed Abdominal Functional Electrical Stimulation (FES), can contract the abdominal muscles, even when paralysed. We have shown that the repeated application of Abdominal FES improves the respiratory function of people with tetraplegia. However, while respiratory function is a predictor of respiratory complications in tetraplegia, evidence that Abdominal FES reduces respiratory complications is only anecdotal. We will undertake the first prospective, multi-centre, randomised placebo controlled trial, to determine whether Abdominal FES reduces respiratory complications in acute tetraplegia.

Definitive evidence of the effectiveness of Abdominal FES to reduce respiratory complications in tetraplegia will drive the rapid worldwide translation of this low cost and easily applied technology for this vulnerable patient group. This will decrease illness and death, reduce rehabilitation time, improve quality of life, and result in a large cost saving for global health systems.

This international collaboration brings together leading research and medical teams from: Neuroscience Research Australia, the Prince of Wales Hospital, and the Royal North Shore Hospital in Australia; The Indian Spinal Cord Injury Centre; Chang Mai University Hospital in Thailand and The Queen Elizabeth National Spinal Injuries Unit and the University of Glasgow in Scotland.

READ MORE

Abdominal Functional Electrical Stimulation to reduce respiratory complications after spinal cord injury.

Control of coughing and expiratory muscles in spinal cord injury

Respiratory complications are the major cause of death for people with spinal cord injuries. People with a high level spinal cord injury are 150 times more likely to die from pneumonia than the general population. This is because after high level spinal cord injury, people have a reduced ability to cough and to clear secretions from the lungs. The major group of muscles that produce a cough are the abdominal muscles. If the abdominal muscles are paralysed after spinal cord injury then the strength of the cough will be severely reduced. In our lab, we are looking at ways to improve cough in people with spinal cord injury by using surface functional electrical stimulation of the abdominal muscles. We have shown that this type of stimulation can improve cough significantly. We are now looking for ways to further improve cough through muscle training as well as ways to develop a portable stimulator that would allow independent activation of a cough.

READ MORE

Control of coughing and expiratory muscles in spinal cord injury

The effect of respiratory muscle training on respiratory health after spinal cord injury

After cervical spinal cord injury (SCI), the respiratory muscles are partly or completely paralysed. This has two major clinical consequences: a decreased ability to get air into the lungs and a decreased ability to cough and remove secretions. This results in a lifetime of recurrent respiratory tract infections (2/year/person) that often progress to pneumonia with frequent and extended hospital admissions. People with cervical SCI are 150 times more likely to die from respiratory complications than the general population, as many as 28% die within the first year after injury. For those that survive the first year, a cervical SCI has a lifetime cost of $9.5million, a large proportion of which is attributed to respiratory-related complications. A recent longitudinal study of people with cervical SCI showed that respiratory muscle weakness is associated with incidental pneumonia. Respiratory muscle weakness also causes dyspnoea (breathlessness) and sleep-disordered breathing, which is 4-10 times more prevalent in people with SCI than the able-bodied population. Therefore, there is an urgent need to identify a simple and cost-effective treatment for respiratory muscles weakness to prevent respiratory complications after SCI, improve quality of life and reduce the burden on the healthcare system.

Our primary aim is to determine definitively the effectiveness of training on respiratory muscle strength, respiratory physiology and health outcomes. To do this we will conduct a randomised controlled trial 2 times bigger than the largest previous study, of respiratory muscle resistive load training in individuals with acute and chronic cervical SCI. The project will provide critical new knowledge about the efficacy of a simple and inexpensive respiratory muscle training regime, which can be applied immediately in the hospital and community, to minimise respiratory morbidity in people with SCI. This project also provides a unique opportunity to investigate other consequential effects of long-term respiratory muscle training that have never been studied in people with SCI. These include effects on cough efficacy, sleep-disordered breathing, breathlessness, respiratory morbidity, respiratory health and neural drive to the diaphragm, as well as quality of life.

READ MORE

The effect of respiratory muscle training on respiratory health after spinal cord injury

RESEARCH TEAM