Dr Matthew Brodie


Senior Research Officer NHMRC EC Fellow
Lecturer, Graduate School of Biomedical Engineering, UNSW

+612 9399 1801

Matt Brodie is a NHMRC EC Fellow with internationally recognised expertise using wearable devices to track human movements, developing bio-signal processing algorithms, and analysing ‘big data’ sets. Highlights include; the MacDiarmid Young Scientist of the Year Award (Future Science and Technology Winner); an International Ski Federation (FIS) Innovation Award; and a Museum exhibition displaying his wearable ‘fusion motion capture’ system. His research objectives are to untangle the complex web of interactions that prevent healthy aging. His main research area is “Wearable Devices for Reducing Falls in Older People and Clinical Populations with Balance Disorders”. Through collaborations he is using wearable sensors to track changing fall risk and prevent falls in older people, stabilise gait in people with Parkinson’s disease, and reduce the effects of contracture in people with Multiple Sclerosis.

Projects Dr Matthew Brodie is currently involved with


SafeTrip – step training to reduce falls in older adults





The Falls, Balance & Injury Research Centre are looking for volunteers for other studies like the ReacStep Study


The SafeTrip study is investigating how older adults learn protective stepping skills to avoid falls when encountering trips and slips. With NeuRA’s cutting-edge motion capture system and other wearable devices, we will be able to observe and analyse movement and muscle activity during reactive or proactive step training.


The SafeTrip team are looking for volunteers aged 65 years and over who:

  • have not been advised by a medical practitioner to not exercise
  • have no existing conditions that may prevent them from exercising (e.g. severe pain, heel ulcers, exercise intolerance, fatigue, etc.)
  • have no neurological conditions (e.g. Parkinson’s Disease, Multiple Sclerosis, Dementia, etc.)
  • have no history of lower limb, pelvis or vertebral fracture(s) or joint replacement(s) in the past 6 months
  • can walk 500m comfortably without mobility aids or rest
  • are active (i.e. exercising for at least 60mins/week) and living independently in the Sydney metropolitan community
  • are not currently participating in any other falls prevention research studies


Eligible volunteers will be invited to NeuRA for some baseline assessments before being randomly allocated to either the intervention or control group. Only the intervention group will undertake the reactive balance training (i.e. 3 weekly training sessions followed by 3-monthly retraining sessions). All participants will receive a fall prevention information booklet and will be invited back for a 12-month re-assessment.


Register your interest or contact the SafeTrip team on 02 9399 1067 or safetrip-study@neura.edu.au for more information. HC190952




SafeTrip – step training to reduce falls in older adults

Neuro-rehabilitation to prevent freezing in Parkinson’s Disease

An engaging self-managed neuro-rehabilitation program using eHealth technologies to improve mobility and enhance independence in people with Parkinson’s disease:

Parkinson’s disease is a multi-systems neurodegenerative disease with the severity of clinical symptoms (including postural instability, gait dysfunction an falls). With the population aging, the number of people affected by Parkinson’s disease is expected to double every 25 years presenting an increasing burden on health service and society as a whole. Falls are a common and devastating event in individuals with Parkinson’s disease and often precipitated by excessive gait variability, postural instability and freezing of gait.

Visual, attentional, haptic and auditory stimuli have been used to improve gait dysfunction in people with Parkinson’s disease. The aim of this project is to develop and evaluate a self-managed program using mHealth technology to improve mobility in people suffering from Parkinson’s disease. Dr Matthew Brodie was awarded a Michael & Elizabeth Gilbert Scholarship in Parkinson’s Disease Research.


Neuro-rehabilitation to prevent freezing in Parkinson’s Disease

Cardiovascular health: Exercise management for people with Peripheral Arterial Disease and Intermitt

An engaging self-management program and scalable intervention using mobile technology to enhance healthy ageing and reduce fall risk in people with intermittent claudication: a randomised trial.

Cardiovascular disease is the leading cause of death and hospital admissions in Australia. Intermittent claudication is an intense cramping leg pain triggered by exercise and a common symptom of Peripheral Arterial Disease. It often causes functional decline, high health service use and loss of independence. Vascular interventions are often used to treat peripheral arterial disease, but are expensive and have limited durability. There is strong evidence that supervised exercise mitigates symptoms and reduces surgery rates. However, compliance and motivation with existing programs is poor (>40% dropout) due to beliefs that exercise-induced pain is harmful.

Supported by the UNSW Medicine Neuroscience, Mental Health and Addiction Theme and SPHERE Clinical Academic Group, we have developed a scalable self-management program for peripheral arterial disease delivered through mobile technology. Our program includes evidence-based standing balance exercises, pain management and interval walking components. It provides individually-tailored tools to empower older people suffering from intermittent claudication to lead more active lives, manage their pain and thereby improving their health outcomes long-term.


Cardiovascular health: Exercise management for people with Peripheral Arterial Disease and Intermittent Claudication

Novel methods for fall prediction in older people

Technological advances have enabled less expensive ways to quantify physical fall risk in the homes of older people.

We are exploring whether unobtrusive monitoring of activities of daily living or regular unsupervised directed routine assessments using new sensor-based technologies can predict falls in older adults more accurately.

We are developing and validating a range of mobile apps to assess fall risk factors in research settings and clinical practice; i.e. questionnaires (fear of falling, physical activity, etc), sensorimotor assessments (balance, vision, etc) and cognitive assessments (executive functioning, processing speed, etc.).

We are also working on Smart home IT support for frail elderly people who live alone.


Novel methods for fall prediction in older people



LINDA ROYLANCE Executive Assistant : +612 9399 1124
: l.roylance@neura.edu.au

Jessica Turner

JESSICA TURNER Research Assistant

JOANNE LO Research Assistant

CAMERON HICKS Research Assistant : 9399 1209
: c.hicks@neura.edu.au

DANIELA MEINRATH Masters student

Joana Caetano


Mayna Ratanapongleka



Inertial wearables as pragmatic tools in dementia.

Godfrey A, Brodie M, van Schooten KS, Nouredanesh M, Stuart S, Robinson L

Older People with Dementia Have Reduced Daily-Life Activity and Impaired Daily-Life Gait When Compared to Age-Sex Matched Controls.

Taylor ME, Brodie MA, van Schooten KS, Delbaere K, Close JCT, Payne N, Webster L, Chow J, McInerney G, Kurrle SE, Lord SR

Head and trunk stability during gait before and after levodopa intake in Parkinson's disease subtypes.

Pelicioni PHS, Brodie MA, Latt MD, Menant JC, Menz HB, Fung VSC, Lord SR

People with the PD PIGD subtype exhibit impaired gait stability that is not improved and frequently worsened by levodopa. New non-pharmaceutical approaches, technological (e.g. cueing) or exercise-based (e.g. balance training) are required to improve or compensate for mediolateral gait instability in this subtype and ultimately prevent falls.

View all publications