Our response to COVID-19

We're supporting people to maintain their wellbeing and manage isolation.

Professor Jane Butler


Interlimb Reflexes Induced by Electrical Stimulation of Cutaneous Nerves after Spinal Cord Injury.

Butler JE, Godfrey S, Thomas CK

Whether interlimb reflexes emerge only after a severe insult to the human spinal cord is controversial. Here the aim was to examine interlimb reflexes at rest in participants with chronic (>1 year) spinal cord injury (SCI, n = 17) and able-bodied control participants (n = 5). Cutaneous reflexes were evoked by delivering up to 30 trains of stimuli to either the superficial peroneal nerve on the dorsum of the foot or the radial nerve at the wrist (5 pulses, 300 Hz, approximately every 30 s). Participants were instructed to relax the test muscles prior to the delivery of the stimuli. Electromyographic activity was recorded bilaterally in proximal and distal arm and leg muscles. Superficial peroneal nerve stimulation evoked interlimb reflexes in ipsilateral and contralateral arm and contralateral leg muscles of SCI and control participants. Radial nerve stimulation evoked interlimb reflexes in the ipsilateral leg and contralateral arm muscles of control and SCI participants but only contralateral leg muscles of control participants. Interlimb reflexes evoked by superficial peroneal nerve stimulation were longer in latency and duration, and larger in magnitude in SCI participants. Interlimb reflex properties were similar for both SCI and control groups for radial nerve stimulation. Ascending interlimb reflexes tended to occur with a higher incidence in participants with SCI, while descending interlimb reflexes occurred with a higher incidence in able-bodied participants. However, the overall incidence of interlimb reflexes in SCI and neurologically intact participants was similar which suggests that the neural circuitry underlying these reflexes does not necessarily develop after central nervous system injury.

Zopiclone Increases the Arousal Threshold without Impairing Genioglossus Activity in Obstructive Sleep Apnea.

Carter SG, Berger MS, Carberry JC, Bilston LE, Butler JE, Tong BK, Martins RT, Fisher LP, McKenzie DK, Grunstein RR, Eckert DJ

To determine the effects of the nonbenzodiazepine sedative zopiclone on the threshold to arousal with increasing respiratory effort and genioglossus muscle activity and to examine potential physiological factors mediating disparate effects of zopiclone on obstructive sleep apnea (OSA) severity between patients. In a group of patients with predominantly severe OSA, zopiclone increased the arousal threshold without reducing genioglossus muscle activity or its responsiveness to negative pharyngeal pressure. These properties may be beneficial in some patients with OSA with certain pathophysiological characteristics but may worsen hypoxemia in others.

Time course of human motoneuron recovery after sustained low-level voluntary activity.

Héroux ME, Butler AA, Gandevia SC, Taylor JL, Butler JE

Motoneurons often fire repetitively and for long periods. In sustained voluntary contractions the excitability of motoneurons declines. We provide the first detailed description of the time course of human motoneuron recovery after sustained activity at a constant discharge rate. We recorded the discharge of single motor units (MUs, n = 30) with intramuscular wire electrodes inserted in triceps brachii during weak isometric contractions. Subjects (n = 15) discharged single MUs at a constant frequency (∼10 Hz) with visual feedback for prolonged durations (3-7 min) until rectified surface electromyogram (sEMG) of triceps brachii increased by ∼100%. After a rest of 1-2, 15, 30, 60, 120, or 240 s, subjects briefly resumed the contraction with the target MU at the same discharge rate. Each MU was tested with three to four rest periods. The magnitude of sEMG was increased when contractions were resumed, and the target motoneuron discharged at the test frequency following rest intervals of 2-60 s (P = 0.001-0.038). The increased sEMG indicates that greater excitatory drive was needed to discharge the motoneuron at the test rate. The increase in EMG recovered exponentially with a time constant of 28 s but did not return to baseline even after a rest period of ∼240 s. Thus the decline in motoneuron excitability from a weak contraction takes several minutes to recover fully.

Substantia nigra echomorphology and motor cortex excitability.

Todd G, Taylor JL, Baumann D, Butler JE, Duma SR, Hayes M, Carew-Jones F, Piguet O, Behnke S, Ridding MC, Berg D, Double KL

The aim of our study was to investigate the relation between substantia nigra (SN) echomorphology and indices of motor cortex excitability. Nigral hyperechogenicity in healthy individuals is thought to represent an SN abnormality or predisposition to Parkinson's disease (PD) and its prevalence is greater in the very old. Our study involved 20 old healthy subjects (aged 72-84 years) known to have normal (n=10) or abnormal (n=10) SN echomorphology. All were in good health with no overt neurological signs. SN morphology was assessed with transcranial sonography through the pre-auricular bone window. Motor cortical excitability and intracortical inhibition were assessed with transcranial magnetic stimulation (TMS) over the first dorsal interosseus motor area. Single stimuli were delivered during relaxation and voluntary contraction and paired stimuli were delivered during relaxation. Each cortical hemisphere was analysed separately. The response to single-pulse TMS (in motor cortex ipsilateral to the target SN) did not differ between groups. However, a significant difference between groups was observed in the paired pulse paradigm (conditioning stimulus intensity: 70% resting motor threshold; interstimulus interval: 2 ms). The conditioned motor evoked potential amplitude was significantly larger ipsilateral to the hyperechogenic SN than in controls (P=0.014). Thus, healthy subjects with SN hyperechogenicity exhibit significantly less intracortical inhibition within the motor cortex than subjects with normal echomorphology. Decreased intracortical inhibition is also observed in PD patients. This study provides further evidence that SN hyperechogenicity in healthy individuals is associated with changes characteristic of PD supporting a role for this feature as a vulnerability marker or state marker for subtle nigral dopaminergic dysfunction.

TMS-evoked silent periods in scalene and parasternal intercostal muscles during voluntary breathing.

Luu BL, Saboisky JP, Taylor JL, Gandevia SC, Butler JE

Transcranial magnetic stimulation (TMS) during voluntary muscle contraction causes a period of reduced electromyographic (EMG) activity (EMG). This is attributed to cortical inhibition and is known as the 'silent period'. Silent periods were compared in inspiratory muscles following TMS during voluntary inspiratory efforts during normocapnia, hypercapnia, and hypocapnia. TMS was delivered during isometric and dynamic contractions of scalenes and parasternal intercostals at 25% maximum inspiratory pressure. Changing end-tidal CO2 did not affect the duration of the silent period nor suppression of EMG activity during the silent period. In scalenes, silent periods were shorter for dynamic compared to isometric contractions (p<0.05); but contraction type did not alter the degree of suppression of EMG during the silent period. In parasternal intercostal, no significant differences in silent period parameters occurred for the different contraction types. The lack of effect of end-tidal CO2 suggests that descending drive from the medullary respiratory centres does not independently activate the inspiratory muscles during voluntary inspiratory efforts.

More conditioning stimuli enhance synaptic plasticity in the human spinal cord.

Fitzpatrick SC, Luu BL, Butler JE, Taylor JL

To examine whether more paired corticospinal-motoneuronal stimulation (PCMS) is more effective at inducing spinal level plasticity. More PCMS produces more reliable enhancement of corticospinal transmission.