Professor Stephen Lord

TEAM LEADER PROFILE

Senior Principal Research Fellow, NHMRC Conjoint Professor, UNSW

+612 9399 1061


Professor Stephen Lord is a Senior Principal Research Fellow at Neuroscience Research Australia, Sydney, Australia. He has published over 400 papers in the areas of balance, gait and falls in older people and is acknowledged as a leading international researcher in his field. His research follows two main themes: the identification of physiological risk factors for falls and the development and evaluation of fall prevention strategies. Key aspects of this research have been the elucidation of sensorimotor factors that underpin balance and gait and the design and evaluation of exercise programs for older people including those at increased risk of falls, i.e. people with Parkinson’s disease, stroke, dementia and frailty. His methodology and approach to fall-risk assessment has been adopted by many researchers and clinicians across the world and he is actively engaged in initiatives aimed at implementing falls prevention evidence into policy and practice.

Projects Professor Stephen Lord is currently involved with

CURRENT PROJECTS

Mechanistic studies investigating the role of visuo-spatial working memory in balance and gait contr

There is emerging evidence that visuo-spatial processing is involved in balance control during gait. Importantly, visuo-spatial processing may be key for fall avoidance as it enables one to precisely remember the position and physical characteristics of upcoming hazards; an essential skill for the safe navigation of everyday environments. Yet, investigations of visuospatial processing use for obstacle avoidance have been restricted to animal studies and young adults. No studies have been undertaken in older people or people with Parkinson’s Disease for whom visuo-spatial processing deficits are evident and associated with impaired postural control.

This series of studies will investigate visuo-spatial processing required for obstacle avoidance and navigation in older people, older people at high risk of falls and people with Parkinson’s Disease. We will use motion capture to investigate behavioural outcomes and a freely-worn brain imaging device, functional near-infrared spectroscopy to study cortical activation in regions of interest. We will conduct two experiments one involving an obstacle crossing task and another, a stepping task.

We hypothesize that older age, Parkinson’s Disease and increasing task complexity will result in increased risk of tripping and impaired visuo-motor performance, in the obstacle crossing task and in the stepping task, respectively.

This research will greatly improve our understanding of central mechanisms for fall risk and build on our recent behavioural work in this area.

READ MORE

Mechanistic studies investigating the role of visuo-spatial working memory in balance and gait control in ageing, fall risk and Parkinson’s Disease

Muscle contributions to gait pattern in in people with Multiple Sclerosis

Miss Angeliki Stivactas (Masters student UNSW), Dr Phu Hoang, Prof Stephen Lord, Dr Jasmine Menant

Gait dysfunction in Mulitple Sclerosis is an important risk factor for falls. Although there is detailed biomechanical evidence of impaired gait patterns in people with Multiple Sclerosis, there is a paucity of objective empirical data relating specific lower limb muscle strength deficits and gait impairments. Most studies to date have used manual muscle testing to investigate lower limb muscle strength and/or have only focused on knee flexors and extensors.

In this study, we aim to identify weak lower limb muscles contributing to gait impairment in Multiple Sclerosis.

Our experimental protocol involves a comprehensive assessment of isometric strength in eight major lower limb muscle groups using electronic strain gauges. We then conduct a full lower-limb gait analysis using motion capture and force platforms. We will conduct statistical analyses to determine which weak muscle groups are significantly associated with markers of gait impairment in Multiple Sclerosis (eg. knee range of motion during the gait cycle). We are also planning to use electromyography on the identified deficient muscle groups in a subset of participants.

Our research will identify the muscle groups contributing to poor gait, likely causing imbalance and trips in people with Multiple Sclerosis. This work is crucial for developing progressive resistance training programs that directly target weak muscle groups to improve gait in people with Multiple Sclerosis.

 

 

READ MORE

Muscle contributions to gait pattern in in people with Multiple Sclerosis

SAFE-PD (Stepping to avoid falls events in people with Parkinson’s disease)

A randomised controlled trial to reduce the risk of falling in people with Parkinson’s disease.

View the clinical trial page for more information and to express interest in volunteering for the study.

 

READ MORE

SAFE-PD (Stepping to avoid falls events in people with Parkinson’s disease)

Neuro-rehabilitation to prevent freezing in Parkinson’s Disease

An engaging self-managed neuro-rehabilitation program using eHealth technologies to improve mobility and enhance independence in people with Parkinson’s disease:

Parkinson’s disease is a multi-systems neurodegenerative disease with the severity of clinical symptoms (including postural instability, gait dysfunction an falls). With the population aging, the number of people affected by Parkinson’s disease is expected to double every 25 years presenting an increasing burden on health service and society as a whole. Falls are a common and devastating event in individuals with Parkinson’s disease and often precipitated by excessive gait variability, postural instability and freezing of gait.

Visual, attentional, haptic and auditory stimuli have been used to improve gait dysfunction in people with Parkinson’s disease. The aim of this project is to develop and evaluate a self-managed program using mHealth technology to improve mobility in people suffering from Parkinson’s disease. Dr Matthew Brodie was awarded a Michael & Elizabeth Gilbert Scholarship in Parkinson’s Disease Research.

READ MORE

Neuro-rehabilitation to prevent freezing in Parkinson’s Disease

International implementation study of StandingTall

An international alliance lays the groundwork for the widespread implementation of StandingTall.

This study targets a major need for older people for whom falls are a real risk that can have debilitating impacts on quality of life. It has been developed with major input from all partners and constitutes a valuable, collaborative partnership between researchers, experts in health promotion, health care providers and policy makers. Our partners for this project are the NSW Office of Preventive Health, Ministry of Health; the Clinical Excellence Commission; and the Agency for Clinical Innovation; two NSW Local Health Districts; i.e. Northern NSW and mid-North Coast; Austin Health, Uniting and the Northern Health Science Alliance in the United Kingdom.

The study aims to accelerate the implementation of StandingTall. It will address the final steps needed to scale up this innovative technology for widespread use by older people across Australia and England with prospects for further international translation. The overall aim of this international project is to establish integrated processes and pathways to deliver StandingTall to older people and to provide ongoing support as required. The project provides scope for further broad scale implementation and a model for incorporating StandingTall into existing health services and routine care.

READ MORE

International implementation study of StandingTall

Treating dizziness in older people

Despite effective treatments being available, up to 40% of older people with reported dizziness remain undiagnosed and untreated. A multidisciplinary assessment battery, with new validated assessments of vestibular impairments is required for diagnosing and treating older people with dizziness. This project will therefore aim to conduct a randomised-control trial of a multifaceted dizziness intervention based on a multidisciplinary assessment, and develop a multiple profile assessment of dizziness for use in Specialist Clinics.

READ MORE

Treating dizziness in older people

Preventing further falls in people who call an ambulance as a result of a fall – a randomised contro

Many older people suffer a fall and it is not uncommon for older fallers to require paramedic care following such events. Routine transportation to hospital is of questionable value and may not be an effective or efficient use of resources. This randomised controlled offered non-transported fallers a new model of care following fall-related paramedic care.

READ MORE

Preventing further falls in people who call an ambulance as a result of a fall – a randomised controlled trial

Patterns of use and cost to the ambulance service of fall-related injury in older people

While the pattern of ambulance use have been studied extensively, the associated costs which are influenced by a variety of factors are still being explored. This program of research aims to better understand what is driving costs within the ambulance service, explore pathways to optimise resource use and evaluate models of care to streamline health care provided to older adults.

READ MORE

Patterns of use and cost to the ambulance service of fall-related injury in older people

Understanding and preventing physical and cognitive decline and falls in older people with dementia

Falls and functional decline are common in people with dementia. Falls are more likely to result in injury, death and institutionalisation when compared to older people without dementia. There is limited evidence that falls can be prevented in people with dementia. Strategies aimed at maintaining independence and preventing decline and falls are urgently needed. This research will a) further our understanding of fall risk and functional decline and b) explore novel fall and decline prevention programs, including the use of technology in older people with dementia.

READ MORE

Understanding and preventing physical and cognitive decline and falls in older people with dementia

Innovative approaches to prevent falls in older people

Physical exercise training has been the primary focus of single interventions trials to reduce falls and advance healthy ageing. However, high attrition rates suggest that current approaches are not sufficient to guarantee long-term adherence to exercise in the majority of older adults.

READ MORE

Innovative approaches to prevent falls in older people

Novel methods for fall prediction in older people

Technological advances have enabled less expensive ways to quantify physical fall risk in the homes of older people.

We are exploring whether unobtrusive monitoring of activities of daily living or regular unsupervised directed routine assessments using new sensor-based technologies can predict falls in older adults more accurately.

We are developing and validating a range of mobile apps to assess fall risk factors in research settings and clinical practice; i.e. questionnaires (fear of falling, physical activity, etc), sensorimotor assessments (balance, vision, etc) and cognitive assessments (executive functioning, processing speed, etc.).

We are also working on Smart home IT support for frail elderly people who live alone.

READ MORE

Novel methods for fall prediction in older people

Causes of sleep apnoea in people with and without multiple sclerosis (MS)

Investigating the role that sleep disruption plays in people with Multiple Sclerosis

READ MORE

Causes of sleep apnoea in people with and without multiple sclerosis (MS)

Adapting the Physiological Profile Assessment to assess upper limb function

This study will produce simple tests that can be used in population studies and patient group clinics. It will provide normative data for documenting the type and severity of upper limb Motor Impairments and provide the impetus to develop strategies to improve function in ageing and other disorders, such as stroke, Parkinson’s disease, arthritis and peripheral neuropathy.

READ MORE

Adapting the Physiological Profile Assessment (PPA) to assess upper limb function

Everyday fatigue and fall risk in older people

This study will determine whether a busy day of physical activity (‘real world’ fatigue) impacts balance and mobility measures in older people. It will determine the importance of fatigue as a fall risk factor in older people, and provide significant information with respect to the value of mitigating fatigue as a fall prevention strategy.

READ MORE

Everyday fatigue and fall risk in older people

Development of wearable sensor assessment tools

Many fall risk assessment tools are available for use in clinical settings. However, the predictive accuracy is limited. This study has assembled the largest wearable sensor data library of “freezes” in people with Parkinson’s disease. It provides great scope for identifying pre-freeze gait characteristics which ultimately may be used to trigger cues for freeze prevention.

READ MORE

Development of wearable sensor assessment tools for clinic and remote (at-home) settings

Interactive step training to reduce falls in people with MS

More than 50% of people with multiple sclerosis will fall over a 3 month period. A clinical trial is being conducted in 500 people with multiple sclerosis who have difficulties with mobility and balance. We hope results of this study will provide solid scientific evidence to include in fall management programs for people with this condition.

READ MORE

An interactive step training RCT to reduce falls in people with Multiple Sclerosis

Training to prevent falls in older people

To date, no studies have examined the potential for cognitive or cognitive-motor training to prevent falls in older people, despite good evidence of fall-related cognitive and physical improvements following both intervention types. Building on our initial work, we have developed and validated a home-based computerised training intervention that can be delivered identically, either while seated (cognitive) or while standing and undertaking balance exercises (cognitive+motor). Our project will also uncover cognitive-motor interactions and their neural pathways related to falls, via state-of-the-art imaging techniques that measure brain structure and functional changes. This intervention addresses both physical and cognitive fall risk factors. It holds promise for a cost-effective fall prevention strategy with multiple health benefits for older people.

READ MORE

A RCT of cognitive-only and cognitive-motor training to prevent falls in older people

NEURA FALLSCREEN

INTERVIEW WITH PROFESSOR STEPHEN LORD

RESEARCH TEAM

LINDA ROYLANCE Executive Assistant : +612 9399 1124
: l.roylance@neura.edu.au

DINAZ PAREKH Research Assistant : d.parekh@neura.edu.au

Jessica Turner

JESSICA TURNER Research Assistant

JOANNE LO Research Assistant

CAMERON HICKS Research Assistant : 9399 1209
: c.hicks@neura.edu.au

DANIELA MEINRATH Masters student

Joana Caetano

JOANA CAETANO PhD student

Mayna Ratanapongleka

MAYNA RATANAPONGLEKA Research Assistant

PHILIP AUBERT Software Developer : p.aubert@neura.edu.au

MATTHEW HAND Research Assistant : m.hand@neura.edu.au

NATASSIA SMITH Research Assistant : n.smith@neura.edu.au

BETHANY HALMY Research Assistant : b.halmy@neura.edu.au

Ashley Woodbury

ASHLEY WOODBURY Research Assistant

CARLY CHAPLIN Research Assistant : c.chaplin@neura.edu.au

PUBLICATIONS

Reducing the burden of dizziness in middle-aged and older people: A multifactorial, tailored, single-blind randomized controlled trial.

Menant JC, Migliaccio AA, Sturnieks DL, Hicks C, Lo J, Ratanapongleka M, Turner J, Delbaere K, Titov N, Meinrath D, McVeigh C, Close JCT, Lord SR

A multifactorial tailored approach for treating dizziness was effective in reducing dizziness handicap in community-living people aged 50 years and older. No difference was seen on the other primary outcomes. Our findings therefore support the implementation of individualized, multifaceted evidence-based therapies to reduce self-perceived disability associated with dizziness in middle-aged and older people.

Head and trunk stability during gait before and after levodopa intake in Parkinson's disease subtypes.

Pelicioni PHS, Brodie MA, Latt MD, Menant JC, Menz HB, Fung VSC, Lord SR

People with the PD PIGD subtype exhibit impaired gait stability that is not improved and frequently worsened by levodopa. New non-pharmaceutical approaches, technological (e.g. cueing) or exercise-based (e.g. balance training) are required to improve or compensate for mediolateral gait instability in this subtype and ultimately prevent falls.

A busy day has minimal effect on factors associated with falls in older people: An ecological randomised crossover trial.

Sturnieks DL, Yak SL, Ratanapongleka M, Lord SR, Menant JC
View all publications